首页 | 本学科首页   官方微博 | 高级检索  
     


Energy expenditure of nonexercise activity
Authors:Levine J A  Schleusner S J  Jensen M D
Affiliation:Endocrine Research Unit, Mayo Clinic and Mayo Foundation, Rochester, MN 55905, USA. levine.james@mayo.edu
Abstract:
BACKGROUND: We found recently that changes in nonexercise activity thermogenesis (NEAT) mediate resistance to weight gain with overfeeding in sedentary adults. A potentially important, yet seldom investigated, component of NEAT is the energy expenditure of fidgeting-like activities. OBJECTIVE: Our goal was to measure changes in energy expenditure with fidgeting-like activities. DESIGN: Energy expenditure was measured in 24 subjects (17 women and 7 men x+/- SD body weight: 76 +/- 21 kg) while recumbent at rest, sitting motionless, standing motionless, partaking of self-selected fidgeting-like movements while seated and while standing, and walking on a treadmill at 1.6, 3.2, and 4.8 km/h (1, 2, and 3 mph). Measurements were performed by using a high-precision, indirect calorimeter connected to the subject via a transparent, lightweight facemask that enabled almost unrestricted movement. RESULTS: Compared with metabolic rate in the supine position (5.4 +/- 1.5 kJ/min), energy expenditure increased while sitting motionless by 4 +/- 6%, while fidgeting while seated by 54 +/- 29% (P: < 0.0001), while standing motionless by 13 +/- 8% (P: < 0.0001), while fidgeting while standing by 94 +/- 38% (P: < 0.0001), while walking at 1.6 km/h by 154 +/- 38% (P: < 0.0001), while walking at 3.2 km/h by 202 +/- 45% (P: < 0.0001), and while walking at 4.8 km/h by 292 +/- 81% (P: < 0.0001). There was a significant, positive correlation between changes in energy expenditure and body weight for fidgeting-like activities while standing (r = 0.43, P: = 0.02) but not while seated. CONCLUSIONS: There is marked variance between subjects in the energy expenditure associated with self-selected fidgeting-like activities. The thermogenic potential of fidgeting-like and low-grade activities is sufficiently great to substantively contribute to energy balance.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号