Multiple signal pathways coupling VIP and PACAP receptors to calcium channels in hamster submandibular ganglion neurons |
| |
Authors: | Kamaishi Hideaki Endoh Takayuki Suzuki Takashi |
| |
Affiliation: | Department of Physiology, Tokyo Dental College, 1-2-2, Masago, Mihama, Chiba 261-8502, Japan. |
| |
Abstract: | The Vasoactive intestinal polypeptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) are two novel neuropeptides which produce particular biological effects caused by interaction with G-protein-coupled receptors. We have shown in a previous study where VIP and PACAP 38 inhibit voltage-dependent calcium channel (VDCC) currents (ICa) via G-proteins in hamster submandibular ganglion (SMG) neurons. In this study, we attempt to further characterize the signal transduction pathways of VIP-and PACAP 38-induced modulation of ICa. Application of 1 microM VIP and PACAP 38 inhibited ICa by 33.0 +/- 3.1% and 36.8 +/- 2.6%, respectively (mean +/- S.E.M., n = 8). Application of strong voltage prepulse attenuated PACAP 38-induced inhibition of ICa. Pretreatment of cAMP dependent protein kinase (PKA) activator attenuated VIP-induced inhibition, but not the PACAP 38-induced inhibition. Intracellular dialysis of the PKA inhibitor attenuated the VIP-induced inhibition, but not the PACAP 38-induced inhibition. Pretreatment of protein kinase C (PKC) activator and inhibitor attenuated VIP-induced inhibition, but not the PACAP 38-induced inhibition. Pretreatment of cholera toxin (CTX) attenuated PACAP 38-induced inhibition of ICa. These findings indicate that there are multiple signaling pathways in VIP and PACAP 38-induced inhibitions of ICa: one pathway would be the VPAC1/VPAC2 receptors-induced inhibition involving both the PKA and PKC, and another one concerns the PAC1 receptor-induced inhibition via Gs-protein betagamma subunits. The VIP-and PACAP 38-induced facilitation of ICa can be observed in the SMG neurons in addition to inhibiting of ICa. |
| |
Keywords: | Vasoactive intestinal polypeptide Pituitary adenylate cyclase-activating polypeptide Parasympathetic ganglion Voltage-dependent calcium channel currents Signal transduction |
本文献已被 ScienceDirect PubMed 等数据库收录! |
|