首页 | 本学科首页   官方微博 | 高级检索  
     


MCORES: a system for noun phrase coreference resolution for clinical records
Authors:Andreea Bodnari  Peter Szolovits   ?zlem Uzuner
Affiliation:MIT, CSAIL, Cambridge, Massachusetts 02139, USA. andreeab@mit.edu
Abstract:

Objective

Narratives of electronic medical records contain information that can be useful for clinical practice and multi-purpose research. This information needs to be put into a structured form before it can be used by automated systems. Coreference resolution is a step in the transformation of narratives into a structured form.

Methods

This study presents a medical coreference resolution system (MCORES) for noun phrases in four frequently used clinical semantic categories: persons, problems, treatments, and tests. MCORES treats coreference resolution as a binary classification task. Given a pair of concepts from a semantic category, it determines coreferent pairs and clusters them into chains. MCORES uses an enhanced set of lexical, syntactic, and semantic features. Some MCORES features measure the distance between various representations of the concepts in a pair and can be asymmetric.

Results and Conclusion

MCORES was compared with an in-house baseline that uses only single-perspective ‘token overlap’ and ‘number agreement’ features. MCORES was shown to outperform the baseline; its enhanced features contribute significantly to performance. In addition to the baseline, MCORES was compared against two available third-party, open-domain systems, RECONCILEACL09 and the Beautiful Anaphora Resolution Toolkit (BART). MCORES was shown to outperform both of these systems on clinical records.
Keywords:Artificial intelligence   clinical outcomes   confidentiality   decision support   discovery   information storage and retrieval (text and images)   machine learning   natural language processing   other methods of information extraction   text and data mining methods
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号