首页 | 本学科首页   官方微博 | 高级检索  
     


Structural changes induced in scallop heavy meromyosin molecules by Ca2+ and ATP
Authors:Ling-Ling Young Frado  Roger Craig
Affiliation:(1) Present address: Department of Cell Biology, University of Massachusetts Medical School, 55 Lake Avenue North, 01655 Worcester, MA, USA
Abstract:
Summary We have used physicochemical and ultrastructural methods to investigate the effects of Ca2+ and ATP on the structure of purified heavy meromyosin (HMM) from the striated adductor muscle of the scallop, a species with myosin-linked regulation. Using papain as a structural probe, we found that, in the presence of ATP, the head/tail junction was five times more susceptible to digestion at high levels of Ca2+ than at low levels.wBy HPLC gel filtration, two fractions of scallop HMM with different Stokes radii were detected in the presence of ATP at low Ca2+, while at high Ca2+ a single peak with the larger Stokes radius predominated. Electron microscopy of rotary-shadowed HMM suggested that molecules with the smaller Stokes radius had their heads bent back towards their tails, while those with the larger radius had heads pointing away from the tail. The number of molecules with their heads bent back decreased at high Ca2+ levels. The data also showed that in the absence of ATP or at high salt, HMM molecules behaved similarly to those in the presence of ATP at high Ca2+.These results suggest that scallop myosin heads can exist in two conformations (heads down towards the tail and heads up away from the tail) and that the equilibrium between these two conformations is altered by the concentrations of salt, ATP and Ca2+. However, the equilibrium between the two forms appears to be too slow to be involved in regulating contraction. The lsquoheads-downrsquo configuration may instead be related to the inactive, folded (10S) form of scallop myosin and possibly involved in filament assembly during development.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号