Abstract: | Gelatin nanoparticles (GNPs) have demonstrated to be beneficial as a biodegradable and biocompatible delivery system. So far, nanoparticles prepared by the two-step desolvation technique were subsequently cross-linked by glutaraldehyde to guarantee storage stability. Although in vivo and in vitro toxicological studies have not revealed any glutaraldehyde related undesired effects, an alternative to chemical cross-linking could ease future clinical use in humans. Therefore, the recombinant enzyme microbial transglutaminase was used to examine its cross-linking abilities in nanoparticle production. Various process parameters, such as incubation time, temperature, medium, pH and the particle purification were evaluated regarding their impact on particle size and its distribution. Cross-linking reactions were best at 25°C using an ion-free solvent at a neutral pH and have been terminated after 12?h. Preliminary storage stability testing indicated adequate consistency of particle size and particle distribution making transglutaminase a potential candidate for glutaraldehyde substitution in future GNP production. |