首页 | 本学科首页   官方微博 | 高级检索  
检索        


Inhibition of angiogenesis by antibody blocking the action of proangiogenic high-molecular-weight kininogen
Authors:R W Colman  R A Pixley  I M Sainz  J S Song  I Isordia-Salas  S N Muhamed    J A Powell Jr  † and S A Mousa†
Institution:The Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA, USA;and;DuPont Pharmaceuticals, Wilmington, DE, USA
Abstract:Summary.  Previously we demonstrated that domain 5 (D5) of high-molecular-weight kininogen (HK) inhibits neovascularization in the chicken chorioallantoic membrane (CAM) assay and further found that kallikrein cleaved HK (HKa) inhibited FGF2-and VEGF-induced neovascularization, and thus was antiangiogenic. In this study, we sought to demonstrate whether uncleaved HK stimulates neovascularization and thus is proangiogenic. The chick chorioallantoic membrane was used as an in ovo assay of angiogenesis. Low-molecular-weight kininogen stimulates angiogenesis, indicating that D5 is not involved. Bradykinin stimulates neovascularization equally to HK and LK and is likely to be responsible for the effect of HK. A murine monoclonal antibody to HK (C11C1) also recognizes a similar component in chicken plasma as detected by surface plasmon resonance. Angiogenesis induced by FGF2 and VEGF is inhibited by this monoclonal antibody and is a more potent inhibitor of neovascularization induced by VEGF than an integrin αvβ3 antibody (LM 609). Our postulate that C11C1 inhibits the stimulation of angiogenesis by HK was confirmed when either C11C1 or D5 completely inhibited angiogenesis in the CAM induced by HK. Growth of human fibrosarcoma (HT-1080) on the CAM was inhibited by GST-D5 and C11C1. These results indicate HK is proangiogenic probably by releasing bradykinin and that a monoclonal antibody directed to HK could serve as an antiangiogenic agent with a potential for inhibiting tumor angiogenesis and other angiogenesis-mediated disorders.
Keywords:coagulation  drug therapy  endothelium  neoplasm  neovascularization
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号