首页 | 本学科首页   官方微博 | 高级检索  
     

基于GPU的蒙特卡洛放疗剂量并行计算
引用本文:甘旸谷,黄斐增. 基于GPU的蒙特卡洛放疗剂量并行计算[J]. 中国医学物理学杂志, 2012, 29(6): 3715-3717,3727
作者姓名:甘旸谷  黄斐增
作者单位:北京大学医学物理和工程北京市重点实验室,北京,100871
摘    要:
目的:蒙特卡洛模拟在放疗剂量计算领域被广泛视为最精确的计算方法,但对于日常的临床应用,其效率仍有较大提升需求和空间。方法:本文会呈现放疗剂量计算领域的最新成果-维持相同的粒子输运原理的同时,使用CUDA语言,利用显卡的GPU(GraphicProcessingUnit)并行处理蒙特卡洛计算中的主要过程,计算光子剂量沉积。这样既可以保证不失去蒙卡模拟的精度.又可以极大地提高运算速度。结果:实践表明在使用NVIDIAGTX4601GDDR5plusINTELi52300的硬件设备,在GPU上并行计算蒙特卡洛放疗剂量沉积时.计算100万个光子剂量沉积时加速因子达到116.6,处理1000万光子入射,加速因子可达127.5。结论:本文中利用显卡GPU运行CUDA语言对放疗剂量计算进行模拟,是一种可以大幅有效提高剂量计算效率方法。

关 键 词:放疗  剂量  高性能计算  蒙特卡洛  GPU  CUDA

GPU-based Parallel Monte Carlo Simulation for Radiotherapy Dose Calculation
Gan Yang-gu , Huang Fei-zeng. GPU-based Parallel Monte Carlo Simulation for Radiotherapy Dose Calculation[J]. Chinese Journal of Medical Physics, 2012, 29(6): 3715-3717,3727
Authors:Gan Yang-gu    Huang Fei-zeng
Affiliation:(The Beijing City Key Lab of Medical Physics and Engineering,Peking University,Beijing 100871,China)
Abstract:
Objective: Monte Carlo simulation is commonly considered to be the most accurate dose calculation method in radiotherapy. However, its efficiency still requires improvement for many routine clinical applications.Methods: This paper will present recent progresses in GPU-based Monte Carlo dose calculation. We utilizes the parallel computation ability of a GPU to achieve high efficiency, while maintaining the same particle transport physics as in the original Monte Carlo simulation code and therefore obtains the same level of simulation accuracy. Results: Our research results show that using an NVIDIA GTX460 GPU card against an INTEL i5 2300 in computing a one-million sample with all 336 processor cores working together, speed-up factors can be as high as 116.6,as for a ten-million situation,even obtain a result as high as 127.5. Conclusions:Using GPU and CUDA to process a Monte Carlo simulation can highly improve the efficiency of dose calculation.
Keywords:monte carlo simulation  radiotherapy  high performance dose calculation  GPU  CUDA
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号