Abstract: | The precise mechanism by which target cells are recognized and subsequently lysed by interleukin-2-activated natural killer (A-NK) cells is poorly understood. In this study the role of major histocompatibility complex (MHC) class I and adhesion molecules in the recognition and lysis of tumor cells was investigated in a syngeneic Wag rat model. Preincubation of tumor cells with F(ab′)2 fragments of anti-MHC class I monoclonal antibody (mAb) OX18 strongly enhanced the A-NK cell-mediated lysis. Also normal syngeneic cells such as T cells and A-NK cells became highly sensitive for lysis by A-NK cells after preincubation with mAb OX18. Two other mAb against MHC class I had no effect on lysis of target cells. These data indicate that masking of MHC class I on syngeneic tumor and normal cells by mAb OX18 is sufficient for A-NK cells to recognize target cells as non-self, resulting in lysis. In addition, we found that the presence of mAb against the β2 (CD18)-integrins blocked the lysis of all tumor cell lines by A-NK cells in 51Cr-release assays, also when target cells were preincubated with mAb OX18. Because of the absence of CD18 on most tumor cells we concluded that a CD18-associated integrin on A-NK cells is essential for lysis of target cells. These results show that in this syngeneic rat model CD18 on A-NK cells together with MHC class I on tumor cells determine A-NK cell-mediated lysis. Furthermore, we hypothesize that the anti-MHC class I OX18 recognizes an epitope on rat MHC class I which is, or is very close to, the restriction element determining A-NK cell-mediated lysis. |