Abstract: | The present study determined the temporal and spatial patterns of genesis for neurons of different sizes in the retinal ganglion cell layer of the ferret. Fetal ferrets were exposed to tritiated thymidine on embryonic days E-22 through E-36. One to 3 months after birth, they were perfused and their retinae dissected, and autoradiographs were prepared from resinembedded sections throughout the entire flattened retinal ganglion cell layer. Soma size differences in conjunction with separate retrograde labeling and calbindin immunocytochemical studies were used as criteria for identifying different retinal ganglion cell subtypes in juvenile and adult ferrets. Neurons of different sizes in the ganglion cell layer were generated at different stages during development. Medium sized cells were generated primarily between E-22 and E-26; the largest cells were generated between E-24 and E-29; small cells were generated between E-26 and E-32; and very small cells were generated between E-29 and E-36. The former three groups were interpreted to be three subtypes of retinal ganglion cells, while the latter group was interpreted to be displaced amacrine cells. This temporal order of the genesis of ganglion cell classes is consistent with the spatial ordering of their fibers in the mature optic chiasm and tract, and it is consistent with the developmental change in decussation pattern recently shown in the optic pathway of embryonic ferrets. The spatial pattern of genesis suggests that ganglion cells of a particular class are added to the ganglion cell layer in a centroperipheral fashion initiated in the dorsocentral retina nasal to the area centralis. No evidence was found for a wave of ganglion cell addition that proceeded in a spiralling pattern around the area centralis, as has been reported in the cat. |