首页 | 本学科首页   官方微博 | 高级检索  
     


The NADPH quinone reductase MdaB confers oxidative stress resistance to Helicobacter hepaticus
Authors:Hong Yang  Wang Ge  Maier Robert J
Affiliation:Department of Microbiology, University of Georgia, Athens, GA 30602, USA.
Abstract:
An mdaB mutant strain in a quinone reductase (MdaB) of Helicobacter hepaticus type strain ATCC51449 was constructed by insertional mutagenesis, and the MdaB protein was purified and compared to the Helicobacter pylori enzyme. While wild type H. hepaticus cells could tolerate 6% O(2) for growth, the mdaB strain was clearly inhibited at this oxygen level. Disruption of the gene downstream of mdaB (HH1473) did not affect the oxidative stress phenotype of the strain. The mdaB mutant was also more sensitive to oxidative stress reagents such as H(2)O(2), cumene hydroperoxide, t-butyl hydroperoxide, and paraquat. All H. hepaticus mdaB strains isolated constitutively up-expressed another oxidative stress-combating enzyme, superoxide dismutase; this is in contrast to H. pylori mdaB strains. H. hepaticus MdaB is a flavoprotein catalyzing quinone reduction using a two-electron transfer mechanism from NAD(P)H to quinone. The H. hepaticus enzyme specific activity was far less than for the H. pylori enzyme purified in the same manner.
Keywords:mdaB   Quinone reductase   Helicobacter hepaticus   Oxidative stress
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号