首页 | 本学科首页   官方微博 | 高级检索  
     


Marginalized transition models for longitudinal binary data with ignorable and non-ignorable drop-out
Authors:Kurland Brenda F  Heagerty Patrick J
Affiliation:National Alzheimer's Coordinating Center, University of Washington, Department of Epidemiology, 4311 11th Ave NE #300, Seattle, WA 98105, USA. kurland@u.washington.edu
Abstract:
We extend the marginalized transition model of Heagerty to accommodate non-ignorable monotone drop-out. Using a selection model, weakly identified drop-out parameters are held constant and their effects evaluated through sensitivity analysis. For data missing at random (MAR), efficiency of inverse probability of censoring weighted generalized estimating equations (IPCW-GEE) is as low as 40 per cent compared to a likelihood-based marginalized transition model (MTM) with comparable modelling burden. MTM and IPCW-GEE regression parameters both display misspecification bias for MAR and non-ignorable missing data, and both reduce bias noticeably by improving model fit.
Keywords:non‐ignorable missing data  longitudinal binary data  marginalized model  misspecification  likelihood
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号