首页 | 本学科首页   官方微博 | 高级检索  
检索        


Photosynthesis tunes quantum-mechanical mixing of electronic and vibrational states to steer exciton energy transfer
Authors:Jacob S Higgins  Lawson T Lloyd  Sara H Sohail  Marco A Allodi  John P Otto  Rafael G Saer  Ryan E Wood  Sara C Massey  Po-Chieh Ting  Robert E Blankenship  Gregory S Engel
Abstract:Photosynthetic species evolved to protect their light-harvesting apparatus from photoxidative damage driven by intracellular redox conditions or environmental conditions. The Fenna–Matthews–Olson (FMO) pigment–protein complex from green sulfur bacteria exhibits redox-dependent quenching behavior partially due to two internal cysteine residues. Here, we show evidence that a photosynthetic complex exploits the quantum mechanics of vibronic mixing to activate an oxidative photoprotective mechanism. We use two-dimensional electronic spectroscopy (2DES) to capture energy transfer dynamics in wild-type and cysteine-deficient FMO mutant proteins under both reducing and oxidizing conditions. Under reducing conditions, we find equal energy transfer through the exciton 4–1 and 4–2-1 pathways because the exciton 4–1 energy gap is vibronically coupled with a bacteriochlorophyll-a vibrational mode. Under oxidizing conditions, however, the resonance of the exciton 4–1 energy gap is detuned from the vibrational mode, causing excitons to preferentially steer through the indirect 4–2-1 pathway to increase the likelihood of exciton quenching. We use a Redfield model to show that the complex achieves this effect by tuning the site III energy via the redox state of its internal cysteine residues. This result shows how pigment–protein complexes exploit the quantum mechanics of vibronic coupling to steer energy transfer.

Photosynthetic organisms convert solar photons into chemical energy by taking advantage of the quantum mechanical nature of their molecular systems and the chemistry of their environment (14). Antenna complexes, composed of one or more pigment–protein complexes, facilitate the first steps in the photosynthesis process: They absorb photons and determine which proportion of excitations to move to reaction centers, where charge separation occurs (4). In oxic environments, excitations can generate highly reactive singlet oxygen species. These pigment–protein complexes can quench excess excitations in these environments with molecular moieties such as quinones and cysteine residues (1, 57).The Fenna–Matthews–Olson (FMO) complex, a trimer of pigment–protein complexes found in the green sulfur bacterium Chlorobaculum tepidum (8), has emerged as a model system to study the photophysical properties of photosynthetic antenna complexes (919). Each subunit in the FMO complex contains eight bacteriochlorophyll-a site molecules (Protein Data Bank, ID code: 3ENI) that are coupled to form a basis of eight partially delocalized excited states called excitons (Fig. 1) (2023). Previous experiments on FMO have observed the presence of long-lived coherences in nonlinear spectroscopic signals at both cryogenic and physiological temperatures (11, 13). The coherent signals are thought to arise from some combination of electronic (2426), vibrational (1618), and vibronic (27) coherences in the system (2830). One previous study reported that the coherent signals in FMO remain unchanged upon mutagenesis of the protein, suggesting that the signals are ground state vibrational coherences (17). Others discuss the role of vibronic coupling, where electronic and nuclear degrees of freedom become coupled (29). Other dimeric model systems have demonstrated the regimes in which these vibronically coupled states produce coherent or incoherent transport and vibronic coherences (3133). Recent spectroscopic data has suggested that vibronic coupling plays a role in driving efficient energy transfer through photosynthetic complexes (27, 31, 33, 34), but to date there is no direct experimental evidence suggesting that biological systems use vibronic coupling as part of their biological function.Open in a separate windowFig. 1.(Left) Numbered sites and sidechains of cysteines C353 and C49 in the FMO pigment–protein complex (PDB ID code: 3ENI) (20). (Right) Site densities for excitons 4, 2, and 1 in reducing conditions with the energy transfer branching ratios for the WT oxidized and reduced protein. The saturation of pigments in each exciton denotes the relative contribution number to the exciton. The C353 residue is located near excitons 4 and 2, which have most electron density along one side of the complex, and other redox-active residues such as the Trp/Tyr chain. C353 and C49 surround site III, which contains the majority of exciton 1 density. Excitons 2 and 4 are generally delocalized over sites IV, V, and VII.It has been shown that redox conditions affect excited state properties in pigment-protein complexes, yet little is known about the underlying microscopic mechanisms for these effects (1, 9). Many commonly studied light-harvesting complexes—including the FMO complex (20), light-harvesting complex 2 (LH2) (35), the PC645 phycobiliprotein (36), and the cyanobacterial antenna complex isiA (37)—contain redox-active cysteine residues in close proximity to their chromophores. As the natural low light environment of C. tepidum does not necessitate photoprotective responses to light quantity and quality, its primary photoprotective mechanism concerns its response to oxidative stress. C. tepidum is an obligate anaerobe, but the presence of many active anoxygenic genes such as sodB for superoxide dismutase and roo for rubredoxin oxygen oxidoreductase (38) suggests that it is frequently exposed to molecular oxygen (7, 39). Using time-resolved fluorescence measurements, Orf et al. demonstrated that two cysteine residues in the FMO complex, C49 and C353, quench excitons under oxidizing conditions (1), which could protect the excitation from generating reactive oxygen species (7, 4042). In two-dimensional electronic spectroscopy (2DES) experiments, Allodi et al. showed that redox conditions in both the wild-type and C49A/C353A double-mutant proteins affect the ultrafast dynamics through the FMO complex (9, 43). The recent discovery that many proteins across the evolutionary landscape possess chains of tryptophan and tyrosine residues provides evidence that these redox-active residues may link the internal protein behavior with the chemistry of the surrounding environment (41, 43).In this paper, we present data showing that pigment–protein complexes tune the vibronic coupling of their chromophores and that the absence of this vibronic coupling activates an oxidative photoprotective mechanism. We use 2DES to show that a pair of cysteine residues in FMO, C49 and C353, can steer excitations toward quenching sites in oxic environments. The measured reaction rate constants demonstrate unusual nonmonotonic behavior. We then use a Redfield model to determine how the exciton energy transfer (EET) time constants arise from changing chlorophyll site energies and their system-bath couplings (44, 45). The analysis reveals that the cysteine residues tune the resonance between exciton 4–1 energy gap and an intramolecular chlorophyll vibration in reducing conditions to induce vibronic coupling and detune the resonance in oxidizing conditions. This redox-dependent modulation of the vibronic coupling steers excitations through different pathways in the complex to change the likelihood that they interact with exciton quenchers.
Keywords:quantum effects in biology  ultrafast spectroscopy  photosynthesis  excitonic energy transfer  vibronic coupling
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号