首页 | 本学科首页   官方微博 | 高级检索  
     


Mda-9/syntenin promotes human brain glioma migration through focal adhesion kinase (FAK)-JNK and FAK-AKT signaling
Authors:Zhong Dong  Ran Jian-Hua  Tang Wen-Yuan  Zhang Xiao-Dong  Tan Yun  Chen Gui-Jie  Li Xiao-Song  Yan Yi
Affiliation:Department of Neurosurgery, The 1st Affiliated Hospital, Chongqing University of Medical Sciences, Chongqing, China.
Abstract:Invasion is usually recognized as the main reason for the high recurrence and death rates of glioma and restricts the efficacy of surgery and other therapies. Therefore, we aimed to investigate the mechanism involved in promotion effects of mda-9/syntenin on human glioma cell migration. The wound healing method was used to test the migration ability of human glioma cells CHG-5 and CHG-hS, stably overexpressing mda-9/syntenin. Western blotting was performed to determine the expression and phosphorylation of focal adhesion kinase (FAK) and JNK in CHG-5 and CHG-hS cells. The migration ability of CHG-hS cells was significantly higher than that of CHG-5 cells in fibronectin (FN)-coated culture plates. Phosphorylation of FAK on tyrosine 397, 576, and 925 sites was increased with time elapsed in CHG-hS cells. However, phosphorylated FAK on the tyrosine 861 site was not changed. Phosphorylated Src, JNK and Akt levels in CHG-hS cells were also significantly upregulated. Phosphorylation of JNK and Akt were abolished by the specific inhibitors SP600125 and LY294002, respectively. and the migration ability of CHG-hS cells was decreased, indicating that the JNK and PI3K/Akt pathways play important roles in regulating mda-9/syntenin-induced human brain glioma migration. Our results indicate Mda- 9/syntenin overexpression could activate FAK-JNK and FAK-Akt signaling and then enhance the migration capacity of human brain glioma cells.
Keywords:Glioma  mda-9/syntenin  focal adhesion kinase  migration
本文献已被 PubMed 等数据库收录!
点击此处可从《Asian Pacific journal of cancer prevention》浏览原始摘要信息
点击此处可从《Asian Pacific journal of cancer prevention》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号