首页 | 本学科首页   官方微博 | 高级检索  
     


The Vibrio cholerae Mannose-Sensitive Hemagglutinin Is the Receptor for a Filamentous Bacteriophage from V. cholerae O139
Authors:Elena A. Jouravleva   Gregory A. McDonald   Jane W. Marsh   Ronald K. Taylor   Mary Boesman-Finkelstein     Richard A. Finkelstein
Affiliation:Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri—Columbia, Columbia, Missouri 65212,1. and Department of Microbiology, Dartmouth Medical School, Hanover, New Hampshire 03755-38422.
Abstract:We previously isolated from a 1994 isolate of Vibrio cholerae O139 a filamentous lysogenic bacteriophage, choleraphage 493, which inhibits pre-O139 but not post-O139 El Tor biotype V. cholerae strains in plaque assays. We investigated the role of the mannose-sensitive hemagglutinin (MSHA) type IV pilus as a receptor in phage 493 infection. Spontaneous, Tn5 insertion, and mshA deletion mutants are resistant to 493 infection. Susceptibility is restored by mshA complementation of deletion mutants. Additionally, the 493 phage titer is reduced by adsorption with MSHA-positive strains but not with a ΔmshA1 strain. Monoclonal antibody against MSHA inhibits plaque formation. We conclude that MSHA is the receptor for phage 493. The emergence and decline of O139 in India and Bangladesh are correlated with the susceptibility and resistance of El Tor strains to 493. However, mshA gene sequences of post-O139 strains are identical to those of susceptible pre-O139 isolates, indicating that phage resistance of El Tor is not due to a change in mshA. Classical biotype strains are (with rare exceptions) hemagglutinin negative and resistant to 493 in plaque assays. Nevertheless, they express the mshA pilin gene. They can be infected with 493 and produce low levels of phage DNA, like post-O139 El Tor strains. Resistance to 493 in plaque assays is thus not equivalent to resistance to infection. The ability of filamentous phages, such as 493, to transfer large amounts of DNA provides them, additionally, with the potential for quantum leaps in both identity and pathogenicity, such as the conversion of El Tor to O139.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号