首页 | 本学科首页   官方微博 | 高级检索  
     


Epidermal and vascular damage analysis of in vivo human skin in response to 595 nm pulsed laser irradiation
Authors:Pikkula Brian M  Chang David W  Dai Tianhong  Anvari Bahman
Affiliation:Department of Bioengineering, Rice University, PO Box 1892, Houston, TX 77251, USA.
Abstract:BACKGROUND AND OBJECTIVES: Laser irradiation is the current modality for treatment of cutaneous hypervascular malformations such as port wine stains and telangiectasia. Although cryogen spray cooling (CSC) is used to protect the epidermis from non-specific laser-induced thermal damage in moderately-pigmented skin types, individuals with high melanin content are still at risk for epidermal damage using the current laser irradiation and CSC parameters. The objective of this study was to investigate the influence of the spray Weber number (1,100 or 5,100) on epidermal protection and examine vascular coagulation in response to pulsed dye laser irradiation. STUDY DESIGN/MATERIALS AND METHODS: Normal, in vivo human skin from eight subjects of Fitzpatrick skin types I-V were precooled with either low or high Weber number cryogen sprays and subsequently irradiated with a pulsed dye laser at 595 nm. Analysis of gross purpura, morphological vascular damage, and apoptosis of the vascular walls were performed. RESULTS: Results demonstrated a high Weber number spray of 5,100 decreased the level of epidermal damage in darker and moderate pigmented individuals compared to a Weber number spray of 1,100. This study also established a positive correlation between gross purpura and the level of vessel wall apoptosis. CONCLUSIONS: This study has demonstrated that CSC with a high Weber number spray can decrease nonspecific thermal damage to the epidermis in response to laser irradiation in vivo. We have also established a positive correlation between gross purpura and the level of vessel wall apoptosis. Lasers Surg. Med. (c) 2005 Wiley-Liss, Inc.
Keywords:apoptosis  blood coagulation  cryogenic sprays  port wine stain
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号