首页 | 本学科首页   官方微博 | 高级检索  
     


Reciprocal modulation of calcium dynamics at rod and cone photoreceptor synapses by nitric oxide
Authors:Kourennyi Dmitri E  Liu Xiao-dong  Hart Jason  Mahmud Farid  Baldridge William H  Barnes Steven
Affiliation:Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA.
Abstract:
The abundance of nitric oxide (NO) synthesizing enzymes identified in the vertebrate retina highlight the importance of NO as a signaling molecule in this tissue. Here we describe opposing actions of NO on the rod and cone photoreceptor synapse. Depolarization-induced increases of calcium concentration in rods and cones were enhanced and inhibited, respectively, by the NO donor S-nitrosocysteine. NO suppressed calcium current in cones by decreasing the maximum conductance, whereas NO facilitated rod Ca channel activation. NO also activated a nonselective voltage-independent conductance in both rods and cones. Suppression of NO production in the intact retina with N(G)-nitro-l-arginine favored cone over rod driven postsynaptic signals, as would be expected if NO enhanced rod and suppressed cone synaptic activity. These findings may imply involvement of NO in regulating the strength of rod and cone pathways in the retina during different states of adaptation.
Keywords:
本文献已被 PubMed 等数据库收录!
点击此处可从《Journal of neurophysiology》浏览原始摘要信息
点击此处可从《Journal of neurophysiology》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号