Salicylate enhances necrosis and apoptosis mediated by the mitochondrial permeability transition. |
| |
Authors: | Ki-Wan Oh Ting Qian David A Brenner John J Lemasters |
| |
Affiliation: | Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill, 27599, USA. |
| |
Abstract: | Onset of the mitochondrial permeability transition (MPT) causes both necrotic and apoptotic cell death in cultured hepatocytes. Salicylate lowers the threshold for onset of the MPT. In this study, our aim was to determine whether nontoxic concentrations of salicylate potentiate MPT-mediated cell killing. In necrotic killing models to rat hepatocytes, salicylate (1 mM) enhanced calcium ionophore (Br-A23187)- and tert-butylhydroperoxide (t-BuOOH)-induced cell death, which was blocked or delayed by cyclosporin A (CsA, 2 microM), a specific inhibitor of the MPT. In hepatocyte apoptosis induced by tumor necrosis factor-alpha (TNF-alpha), salicylate accelerated cell killing after low-dose TNF-alpha (1 ng/ml), which by itself induced little apoptosis. Salicylate enhancement of apoptosis was associated with onset of the MPT and accelerated caspase 3 activation. Salicylate also augmented killing of MCF-7 human breast tumor cells by etoposide and PLC/PRF/5 human hepatoma cells by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). In conclusion, salicylate potentiates both necrotic and apoptotic cell killing by promoting onset of the MPT. Enhancement by salicylate of MPT-dependent apoptosis may play a role in protection by aspirin and other nonsteroidal anti-inflammatory drugs against colon, lung, and breast cancer. |
| |
Keywords: | salicylate mitochondrial permeability transition t-butylhydroperoxide A23187 tumor necrosis factor necrosis apoptosis. |
本文献已被 Oxford 等数据库收录! |
|