首页 | 本学科首页   官方微博 | 高级检索  
     

基于高斯过程分步分类的阿尔茨海默病辅助诊断
作者姓名:陈靖  靳晨  滕升华
作者单位:山东科技大学电子通信与物理学院
摘    要:
脑影像数据维数高且有效训练样本少是影响阿尔茨海默病计算机辅助诊断性能的重要因素。对此小样本分类问题,以高斯过程为基础设计了一种分步的分类方法:先对测试样本利用高斯过程进行初步分类;依据后验概率筛选类别归属确定性强的样本作为补充参与训练,再对其余错分可能性相对较高的样本重新进行分类。利用ADNI数据库磁共振影像的分类实验表明,二次分类倾向于增大样本归属于真实类别的后验概率、提高类别判定的确定性,分类性能优于常规的高斯过程分类方法和支持向量机。

本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号