Abstract: | Poly(ADP-ribose) polymerase-1 (PARP-1), the most prominent member of the PARP family, is a DNA-binding protein that is activated by nicks in DNA occurring during inflammation, ischaemia, neurodegeneration or cancer therapy. Activated PARP-1 consumes NAD+ that is cleaved into nicotinamide and ADP-ribose and polymerises the latter onto nuclear acceptor proteins. This highly energy consuming process is pivotal for the maintenance of genomic stability although over-activation can culminate in cell dysfunction and necrosis. Therefore, PARP-1 is regarded as a promising target for the development of drugs useful in various forms of inflammation, ischaemia–reperfusion injury and as an adjunct in cancer therapy. This review summarises the structural classes of known PARP-1 inhibitors, with a focus on new inhibitors published for this target, between 2002 and July 2004. The chemistry and biological data disclosed in these patent applications are discussed in light of new structural knowledge of the catalytic domain of the PARP family and recent work with potent inhibitors demonstrating the effects of PARP inhibition in various animal disease models. |