首页 | 本学科首页   官方微博 | 高级检索  
     


Hyperbaric oxygen stimulates vascularization and bone formation in rat calvarial defects
Authors:T.O. Pedersen  Z. Xing  A. Finne-Wistrand  S. Hellem  K. Mustafa
Affiliation:1. Department of Clinical Dentistry, Center for Clinical Dental Research, University of Bergen, Norway;2. Department of Biomedicine, University of Bergen, Norway;3. Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, Sweden;4. Department of Clinical Dentistry, Section for Oral and Maxillofacial Surgery, University of Bergen, Norway
Abstract:Hyperbaric oxygen (HBO) therapy is used to treat or prevent tissue necrosis in patients undergoing irradiation. Many such patients require reconstructive surgery, but little is known of the effects of HBO on bone vascularization and regeneration. In this study, copolymer poly(l-lactide-co-1,5-dioxepan-2-one) (poly(LLA-co-DXO)) scaffolds were implanted into critical-sized calvarial defects in Wistar rats. The animals were randomly allotted to hyperbaric or normobaric oxygen groups. The treatment group received five sessions weekly for 90 min at increased atmospheric pressure, for up to 4 weeks. Samples were retrieved at weeks 2 and 8, i.e. after a total of 10 and 20 sessions, respectively. The samples were analyzed by real-time reverse transcriptase polymerase chain reaction (RT-PCR) and histology at week 2, and radiographically and histologically at week 8. At week 2, defects treated with HBO exhibited greater numbers of cells positive for the endothelial marker CD31, up-regulated gene expression of osteogenic markers, and down-regulated expression of pro-inflammatory cytokines. At week 8, radiographic examination revealed that calvarial defects subjected to HBO exhibited a higher percentage of radiopacities than normobaric controls, and histological examination disclosed enhanced bone healing. These results confirmed that HBO treatment was effective in stimulating vascularization and bone formation in rat calvarial defects.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号