首页 | 本学科首页   官方微博 | 高级检索  
     


Iodine-124-labeled iodo-azomycin-galactoside imaging of tumor hypoxia in mice with serial microPET scanning
Authors:Pat Zanzonico  Joseph O’Donoghue  J Donald Chapman  Richard Schneider  Shangde Cai  Steven Larson  Bixiu Wen  Yuchun Chen  Ronald Finn  Shutian Ruan  Leo Gerweck  John Humm  Clifton Ling
Affiliation:(1) Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA;(2) Fox Chase Cancer Center, Philadelphia, PA, USA;(3) Massachusetts General Hospital, Boston, MA, USA
Abstract:
Tumor hypoxia, present in many human cancers, can lead to resistance to radiation and chemotherapy, is associated with a more aggressive tumor phenotype and is an independent prognostic factor of clinical outcome. It is therefore important to identify and localize tumor hypoxia in cancer patients. In the current study, serial microPET imaging was used to evaluate iodine-124-labeled iodo-azomycin-galactoside (124I-IAZG) (4.2-day physical half-life) as a hypoxia imaging agent in 17 MCa breast tumors and six FSaII fibrosarcomas implanted in mice. For comparison, another promising hypoxic-cell PET radiotracer, fluorine-18-labeled fluoro-misonidazole (18F-FMISO), was also imaged in the same tumor-bearing animals. Twelve animals were also imaged with 18F-labeled fluoro-deoxyglucose (18F-FDG). In addition, histological examination was performed, and direct measurement of tumor oxygenation status carried out with the Oxylite probe system. Two size groups were used, relatively well-oxygenated tumors in the range of 80–180 mg were designated as small, and those >300 mg and highly hypoxic, as large. Based on the data from 11 MCa and six FSaII tumors, both 124I-IAZG and 18F-FMISO images showed high tracer uptake in the large tumors. In 18F-FMISO images at 1, 3–4, and 6–8 h post-injection (p.i.), there was considerable whole-body background activity. In contrast, 124I-IAZG imaging was optimal when performed at 24–48 h p.i., when the whole-body background had dissipated considerably. As a result, the 124I-IAZG images at 24–48 h p.i. had higher tumor to whole-body activity contrast than the 18F-FMISO images at 3–6 h p.i. Region-of-interest analysis was performed as a function of time p.i. and indicated a tumor uptake of 5–10% (of total-body activity) for FMISO at 3–6 h p.i., and of ~17% for IAZG at 48 h p.i. This was corroborated by biodistribution data in that the tumor-to-normal tissue (T/N, normal tissues of blood, heart, lung, liver, spleen, kidney, intestine, and muscle) activity ratios of IAZG at 24 h p.i. was 1.5–2 times higher than those of FMISO at 3 h p.i., with the exception of stomach. Statistical analysis indicated that these differences in T/N ratios were significant. The small tumors were visualized in the 18F-FDG images, but not in the 124I-IAZG or 18F-FMISO images. This was perhaps due to the combined effect of a smaller tumor volume and a lower hypoxic fraction. Oxylite probe measurement indicated a lesser proportion of regions with pO2<2.5 mmHg in the small tumors (e.g., pO2 was <2.5 mmHg in 28% and 67% of the data in small and large FSaII tumors, respectively), and the biodistribution data showed lower uptake of the tracers in the small tumors than in the large tumors. In the first study of its kind, using serial microPET imaging in conjunction with biodistribution analysis and direct probe measurements of local pO2 to evaluate tumor hypoxia markers, we have provided data showing the potential of 124I-IAZG for hypoxia imaging.
Keywords:IAZG  FMISO  Tumor hypoxia  microPET
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号