Porcine enamel matrix derivative enhances trabecular bone regeneration during wound healing of injured rat femur. |
| |
Authors: | F Kawana Y Sawae T Sahara S Tanaka K Debari M Shimizu T Sasaki |
| |
Affiliation: | Department of Oral Histology, School of Dentistry, Showa University, Shinagawa-ku, Tokyo, Japan. |
| |
Abstract: | To elucidate the effects of enamel matrix derivative (EMD: Emdogain) on bone regeneration in rat femurs after drill-hole injury, defects in bone were filled with either EMD or its carrier, PGA, as control. On postoperative days 4 to 28, dissected femurs were examined by means of various morphological approaches. In both experimental groups, formation of trabecular bone, which was immunostained for bone sialoproteins (BSP), had occurred in the medullary cavities at cylindrical bone defects on Day 7 postoperatively. Cuboidal osteoblasts were clearly observed on these newly-formed BSP-positive bone trabeculae. On Days 7 and 14, many multinucleated giant cells, which strongly expressed cathepsin K, had appeared on these bone trabeculae, indicating active bone remodeling. In these bone trabeculae, Ca and P weight % and Ca/P ratio were similar to those of cortical bone, and there was no significant difference between the PGA- and EMD-applied groups. Bone volume fraction of newly-formed bone trabeculae on Day 7 postoperatively was significantly higher in the EMD-applied group than in the PGA-applied controls. Because of active bone remodeling and the marked decrease of bone volume, on Days 14 and 28 postoperatively, however, there was no longer a significant difference in trabecular bone volume fraction between the experimental groups. Our results suggest that EMD possesses an osteo-promotive effect on bone and medullary regeneration during wound healing of injured long bones. |
| |
Keywords: | |
|
|