首页 | 本学科首页   官方微博 | 高级检索  
     


High-gamma modulation language mapping with stereo-EEG: A novel analytic approach and diagnostic validation
Affiliation:1. Department of Neurosurgery, Stanford University School of Medicine, United States of America;2. Department of Neurology, Stanford University School of Medicine, United States of America;3. Division of Pediatric Neurology, Lucile Packard Children''s Hospital Stanford, United States of America;4. Division of Pediatric Neurosurgery, Lucile Packard Children''s Hospital Stanford, United States of America;1. Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children''s Hospital Medical Center, Cincinnati, OH, United States of America;2. Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America;3. Department of Pediatrics, The University of Tennessee Health Science Center, Memphis, TN, United States of America;4. Neuroscience Institute, Le Bonheur Children''s Hospital, Memphis, TN, United States of America;5. Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, United States of America;6. Pediatric Neuroimaging Research Consortium, Cincinnati Children''s Hospital Medical Center, Cincinnati, OH, United States of America;7. Division of Pediatric Neurosurgery, Cincinnati Children''s Hospital Medical Center, Cincinnati, OH, United States of America
Abstract:ObjectiveA novel analytic approach for task-related high-gamma modulation (HGM) in stereo-electroencephalography (SEEG) was developed and evaluated for language mapping.MethodsSEEG signals, acquired from drug-resistant epilepsy patients during a visual naming task, were analyzed to find clusters of 50–150 Hz power modulations in time–frequency domain. Classifier models to identify electrode contacts within the reference neuroanatomy and electrical stimulation mapping (ESM) speech/language sites were developed and validated.ResultsIn 21 patients (9 females), aged 4.8–21.2 years, SEEG HGM model predicted electrode locations within Neurosynth language parcels with high diagnostic odds ratio (DOR 10.9, p < 0.0001), high specificity (0.85), and fair sensitivity (0.66). Another SEEG HGM model classified ESM speech/language sites with significant DOR (5.0, p < 0.0001), high specificity (0.74), but insufficient sensitivity. Time to largest power change reliably localized electrodes within Neurosynth language parcels, while, time to center-of-mass power change identified ESM sites.ConclusionsSEEG HGM mapping can accurately localize neuroanatomic and ESM language sites.SignificancePredictive modelling incorporating time, frequency, and magnitude of power change is a useful methodology for task-related HGM, which offers insights into discrepancies between HGM language maps and neuroanatomy or ESM.
Keywords:Intracranial electrodes  Epilepsy surgery  Cortical localization  High-gamma activation  Machine learning  AUC"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  k0035"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  Area under the ROC Curve  AD"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  k0045"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  After-discharge  CI"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  k0055"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  Confidence Intervals  CT"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  k0065"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  Computed Tomographic  CW"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  k0075"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  Cluster Weight  DOR"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  k0085"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  Diagnostic Odds Ratio  DRE"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  k0095"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  Drug-Resistant Epilepsy  ESM"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  k0105"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  Electrical cortical Stimulation Mapping  FSIQ"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  k0115"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  Full-scale Intelligence Quotient  GLMM"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  k0125"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  Generalized Linear Mixed Model  GM"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  k0135"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  Gray Matter  HGM"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  k0145"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  High-gamma Modulation  MNI"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  k0155"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  Montreal Neurological Institute  MRI"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  k0165"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  Magnetic Resonance Imaging  Probability that the largest time-frequency cluster during naming response arose from the baseline (inter-trial) distribution  PPV"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  k0185"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  Positive Predictive Value  ROC"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  k0195"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  Receiver Operating Characteristic  SD"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  k0205"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  Standard Deviation  SEEG"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  k0215"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  Stereo-Electroencephalography  Time, Frequency, and Value (magnitude) of power change at the center-of-mass of the largest cluster of power differential between the baseline and naming conditions  Time, Frequency, and Value (magnitude) of power change at the point of highest z-score within the largest cluster of power differential between the baseline and naming conditions  TFR"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  k0245"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  Time-Frequency Representation  WM"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  k0255"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  White Matter
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号