首页 | 本学科首页   官方微博 | 高级检索  
     

超声造影定量参数联合同型半胱氨酸及超敏C-反应蛋白对缺血性脑卒中的预测价值
引用本文:徐小兰,余岳芬,刘振华,王薇,符春荣,符芳婧. 超声造影定量参数联合同型半胱氨酸及超敏C-反应蛋白对缺血性脑卒中的预测价值[J]. 国际神经病学神经外科学杂志, 2019, 46(2): 145-149. DOI: 10.16636/j.cnki.jinn.2019.02.006
作者姓名:徐小兰  余岳芬  刘振华  王薇  符春荣  符芳婧
作者单位:儋州市人民医院超声科,海南省儋州市,571799;儋州市人民医院超声科,海南省儋州市,571799;儋州市人民医院超声科,海南省儋州市,571799;儋州市人民医院超声科,海南省儋州市,571799;儋州市人民医院超声科,海南省儋州市,571799;儋州市人民医院超声科,海南省儋州市,571799
基金项目:海南省医药卫生科研基金项目(16A200102)
摘    要:目的探讨超声造影峰值强度(TIC-P)、强度均值(TIC-M)、峰值(FC-P)、锐度(FC-S)、曲线下面积(FC-AUC)联合血清同型半胱氨酸(Hcy)及超敏C-反应蛋白(Hs-CRP)对缺血性脑卒中(ICS)的预测价值。方法选取儋州市人民医院行颈动脉超声检查发现颈动脉粥样硬化患者196例,根据其是否发生ICS,分为ICS组(n=91)和非ICS组(n=105)。记录各组的基线资料,并进行超声造影检查及Hcy及Hs-CRP水平检测。应用ROC曲线分析超声造影定量参数、Hcy及Hs-CRP预测ICS发生的价值。结果 ICS组颈动脉斑块超声造影定量参数TIC-P、TIC-M、FC-P、FC-S和FC-AUC值均明显高于非ICS组(P 0. 05)。ICS组Hcy及Hs-CRP水平均明显高于非ICS组(P 0. 01)。ROC曲线分析显示,三者联合预测ICS的AUC(95%CI)为0. 986 (0. 940~0. 998)明显高于单项超声造影定量参数0. 890 (0. 830~0. 951)、Hcy 0. 827 (0. 770~0. 885)及Hs-CRP 0. 795 (0. 737~0. 856),其预测ICS的敏感度(98. 5%)和特异度(93. 6%)均较高。相关分析显示,ICS患者超声造影定量参数FC-AUC与Hcy、Hs-CRP的相关性较好(r=0. 815、0. 792,P 0. 001)。结论超声造影定量参数联合Hcy及Hs-CRP水平能准确预测ICS的发生。

关 键 词:缺血性脑卒中  颈动脉粥样斑块  超声造影  同型半胱氨酸  超敏C-反应蛋白
收稿时间:2018-05-22
修稿时间:2018-12-11

Value of contrast-enhanced ultrasound quantitative parameters combined with homocysteine and high-sensitivity C-reactive protein in predicting ischemic stroke
XU Xiao-Lan,YU Yue-Fen,LIU Zhen-Hu,WANG Wei,FU Chun-Rong,FU Fang-Jing. Value of contrast-enhanced ultrasound quantitative parameters combined with homocysteine and high-sensitivity C-reactive protein in predicting ischemic stroke[J]. Journal of International Neurology and Neurosurgery, 2019, 46(2): 145-149. DOI: 10.16636/j.cnki.jinn.2019.02.006
Authors:XU Xiao-Lan  YU Yue-Fen  LIU Zhen-Hu  WANG Wei  FU Chun-Rong  FU Fang-Jing
Affiliation:Danzhou People's Hospital, Danzhou, Hainan 571799, China
Abstract:Objective To investigate the value of time-intensity curve peak intensity (TIC-P), time-intensity curve mean intensity (TIC-M), peak of the fitting curve (FC-P), sharpness of the fitting curve (FC-S), and area under the fitting curve (FC-AUC) combined with serum homocysteine (Hcy) and high-sensitivity C-reactive protein (hs-CRP) in predicting ischemic stroke (ICS). Methods A total of 196 patients who were found to have carotid atherosclerosis by carotid artery ultrasound in Danzhou People's Hospital were enrolled, and according to the presence or absence of ICS, they were divided into ICS group with 91 patients and non-ICS group with 105 patients. The baseline data of each group were recorded, contrast-enhanced ultrasound was performed, and Hcy and hs-CRP levels were measured. The receiver operating characteristic (ROC) curve was used to analyze the value of quantitative parameters of contrast-enhanced ultrasound, Hcy, and hs-CRP in predicting the development of ICS. Results The ICS group had significantly higher quantitative parameters of carotid plaque contrast-enhanced ultrasound, TIC-P, TIC-M, FC-P, FC-S, and FC-AUC, than the non-ICS group (P<0.05). The ICS group had significantly higher Hcy and hs-CRP levels than the non-ICS group (P<0.01). The ROC curve analysis showed that combined measurement of quantitative parameters, Hcy, and hs-CRP had a significantly higher area under the ROC curve in predicting ICS than quantitative parameters, Hcy, or hs-CRP measured alone[0.986 (95%CI:0.940-0.998) vs 0.890 (95%CI:0.830-0.951)/0.827 (95%CI:0.770-0.885)/0.795 (95%CI:0.737-0.856)], and combined measurement of the three indices had a sensitivity of 98.5% and a specificity of 93.6% in predicting ICS. The correlation analysis showed that in the patients with ICS, FC-AUC was well correlated with Hcy and hs-CRP (r=0.815 and 0.792, P<0.001). Conclusions Contrast-enhanced ultrasound quantitative parameters combined with Hcy and hs-CRP levels can accurately predict the development of ICS.
Keywords:ischemic stroke  carotid atherosclerosis  contrast-enhanced ultrasound  homocysteine  high-sensitivity C-reactive protein  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《国际神经病学神经外科学杂志》浏览原始摘要信息
点击此处可从《国际神经病学神经外科学杂志》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号