首页 | 本学科首页   官方微博 | 高级检索  
     

基于术前超声影像量化特征的粗梁团块型肝细胞癌区分
引用本文:古今,张瑜,周泽芬,张文芳. 基于术前超声影像量化特征的粗梁团块型肝细胞癌区分[J]. 临床超声医学杂志, 2022, 24(8)
作者姓名:古今  张瑜  周泽芬  张文芳
作者单位:重庆市公共卫生医疗救治中心 Chongqing Public Health Medical Treatment Center超声科;重庆市公共卫生医疗救治中心 Chongqing Public Health Medical Treatment Center超声科,重庆市红十字会医院江北区人民医院Chongqing Red Cross Hospital Jiangbei District People''s Hospital 病理科,重庆市公共卫生医疗救治中心 Chongqing Public Health Medical Treatment Center超声科;重庆市公共卫生医疗救治中心 Chongqing Public Health Medical Treatment Center超声科,重庆医科大学附属第一医院 Chongqing Medical University First Affiliated Hospital 超声科 重庆
基金项目:重庆市自然科学基金重点项目(cstc2019jcyj-zdxmX0019)
摘    要:
目的 使用术前超声影像量化特征建立粗梁团块型肝癌区分模型。方法 回顾性收集我院2017年8月1日至2020年10月1日经手术切除治疗的肝细胞癌患者。经过临床信息可用性筛选及病理切片再阅后产生研究队列并按70%:30%比例产生训练集及验证集。提取训练集术前超声影像量化特征并进行χ2值排序法筛选。使用随机森林法训练粗梁团块型肝癌区分模型后在验证集上评估建模性能。结果 共纳入79例粗梁团块型及其他类型肝细胞癌。术前AFP水平、Edmondson-Steiner分化分级、卫星灶情况、微血管侵犯情况在粗梁团块型及其他类型肝细胞癌中存在统计学差异,年龄、性别、HBV感染情况不具有统计学显著的组间差异。特征筛选算法选择高维纹理特征进行亚型预测,最终随机森林模型在验证集上AUC=0.895、准确度为0.833、精确度为0.833、灵敏度为60%、特异度为89.5%。结论 使用术前超声影像量化特征可建立粗梁团块型肝癌区分模型,具有高特异度并有望与其他模态区分模型互补,改善肝细胞癌患者预后。

关 键 词:肝细胞癌   肿瘤   超声检查
收稿时间:2021-12-19
修稿时间:2022-02-21

The pre-operative ultra-sound imaging quantitative features based macrotrabecular-massive hepatocellular carcinoma differentiation.
gujin,zhangyu,zhouzefen and zhangwenfang. The pre-operative ultra-sound imaging quantitative features based macrotrabecular-massive hepatocellular carcinoma differentiation.[J]. Journal of Ultrasound in Clinical Medicine, 2022, 24(8)
Authors:gujin  zhangyu  zhouzefen  zhangwenfang
Abstract:
Objective To build macrotrabecular-massive hepatocellular carcinoma (MTM-HCC) differentiation model based on the quantitative pre-operative ultrasound features. Methods The hepatocellular carcinoma patients that underwent surgery in our hospital from Augest 1,2017 to Oct 1, 2020 were retrospectively collected. After clinical and pathological sorting, the collected cases were separated into training set (70%) and validation set (30%). The quantitative pre-operative ultrasound features were extracted from training set data and selected by chi-square algorithm. Then, the trained random forest model performance was evaluated on validation set data. Results A total of 79 MTM-HCC and other HCCs were included in this study. The pre-operative AFP level, Edmondson-Steiner grade, satellite lesion and microvascular invasion status distribution were significantly different between MTM-HCC and other HCCs, while the age, sex, HBV infection status was not. The feature selection algorithm used high-dimension texture features in MTM-HCC prediction. The final random forest model achieved AUC=0.895, Accuracy=0.833, Precision=0.833, Sensitivity=60% and Specificity=89.5% on validation set. Conclusions The prognosis-benefit MTM-HCC differentiation model could be built based on the quantitative pre-operative ultrasound features, which has high specificity and was complementary with other differentiation model.
Keywords:
点击此处可从《临床超声医学杂志》浏览原始摘要信息
点击此处可从《临床超声医学杂志》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号