首页 | 本学科首页   官方微博 | 高级检索  
     

人工智能在中医诊断中的应用进展
引用本文:罗思言1,2,王心舟3,饶向荣1. 人工智能在中医诊断中的应用进展[J]. 中国医学物理学杂志, 2022, 0(5): 647-654. DOI: DOI:10.3969/j.issn.1005-202X.2022.05.021
作者姓名:罗思言1  2  王心舟3  饶向荣1
作者单位:1.中国中医科学院广安门医院肾病科, 北京 100053; 2.北京中医药大学广安门医院, 北京 100029; 3.同济大学电子与信息工程学院, 上海 201804
摘    要:本研究立足于各类人工智能算法的数学原理,阐述了人工智能在中医诊断中的应用现状及问题。其中传统机器学习算法,如支持向量机、贝叶斯算法等因其小样本学习的特性,在闻诊、问诊等场景具备较高的精度与稳健性;而近年来新兴的深度学习算法则可以处理如图像、音频信号、文本等非结构化数据,与望诊、切诊等场景相契合;多模态深度学习则可以充分挖掘望闻问切数据中的信息,并在特征空间中进行隐式的四诊合参。人工智能的引入可以进一步推动中医的客观化、定量化发展,但其数据驱动的特性要求进一步规范现行的中医数据库建立流程。

关 键 词:人工智能  中医四诊  深度学习  综述

Advances in the application of artificial intelligence in traditional Chinese medicine diagnosis
LUO Siyan1,2,WANG Xinzhou3,RAO Xiangrong1. Advances in the application of artificial intelligence in traditional Chinese medicine diagnosis[J]. Chinese Journal of Medical Physics, 2022, 0(5): 647-654. DOI: DOI:10.3969/j.issn.1005-202X.2022.05.021
Authors:LUO Siyan1  2  WANG Xinzhou3  RAO Xiangrong1
Affiliation:1. Department of Nephrology, Guanganmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China 2. Guanganmen Hospital, Beijing University of Chinese Medicine, Beijing 100029, China 3. College of Electronic and Information Engineering, Tongji University, Shanghai 201804, China
Abstract:Abstract: Based on the mathematical principles of various artificial intelligence algorithms, the current situation and problems of artificial intelligence application in traditional Chinese medicine (TCM) diagnosis is expounded. The traditional machine learning algorithms, such as support vector machines and Bayesian algorithms, have high accuracy and robustness in auscultation, inquiry and other scenarios because of their characteristic of small sample learning. Some deep learning algorithms emerging in recent years which can process unstructured data such as images, audio signals, texts, etc. are suitable for scenarios such as inspection and palpation. Multi-modal deep learning can fully mine the information in the data of inspection, auscultation, inquiry and palpation, and perform implicit analysis of 4 TCM diagnostic methods in the feature space. The introduction of artificial intelligence can further promote the objective and quantitative development of TCM, but its data-driven nature requires further standardization of the current TCM database establishment.
Keywords:Keywords: artificial intelligence 4 diagnostic methods of traditional Chinese medicine deep learning review
点击此处可从《中国医学物理学杂志》浏览原始摘要信息
点击此处可从《中国医学物理学杂志》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号