首页 | 本学科首页   官方微博 | 高级检索  
     

U-Net改进及其在新冠肺炎图像分割的应用
引用本文:顾国浩,龙英文,吉明明. U-Net改进及其在新冠肺炎图像分割的应用[J]. 中国医学物理学杂志, 2022, 0(8): 1041-1048. DOI: DOI:10.3969/j.issn.1005-202X.2022.08.022
作者姓名:顾国浩  龙英文  吉明明
作者单位:上海工程技术大学电子电气工程学院, 上海 201620
基金项目:国家自然科学基金(61603241);
摘    要:
CT成像已成为检测新型冠状病毒肺炎(COVID-19)最重要的步骤之一。针对手动分割患者胸部CT图像中毛玻璃混浊区域繁琐的问题提出了一种自注意力循环残差U型网络模型来实现COVID-19患者肺部CT图像的自动分割,辅助医生诊断。在U-Net模型的基础上引入了循环残差模块和自注意力机制来加强对特征信息的抓取从而提升分割精度。在公开数据集上的分割实验结果显示,该算法的Dice系数、敏感度和特异度分别达到了85.36%、76.64%和76.25%,与其他算法相比具有良好的分割效果。

关 键 词:U-Net  新型冠状病毒肺炎  图像分割  循环残差  自注意力机制

Improved U-Net and its application in COVID-19 image segmentation
GU Guohao,LONG Yingwen,JI Mingming. Improved U-Net and its application in COVID-19 image segmentation[J]. Chinese Journal of Medical Physics, 2022, 0(8): 1041-1048. DOI: DOI:10.3969/j.issn.1005-202X.2022.08.022
Authors:GU Guohao  LONG Yingwen  JI Mingming
Affiliation:School of Electrical and Electronic Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
Abstract:
Abstract: Computed tomography (CT) has become one of the most important steps in the detection of the corona virus disease 2019 (COVID-19). Aiming at the cumbersome problem of manually segmenting the ground-glass opacity area in the chest CT image, a U-shaped network model with recurrent ResNet and self-attention is proposed to realize the automatic segmentation in the lung CT images of COVID-19 patients and assist doctors in diagnosis. The improved U-Net with recurrent ResNet and self-attention is introduced to enhance the capture of feature information, thereby improving the accuracy of segmentation. The segmentation experiment on the public data set show that the Dice coefficient, sensitivity and specificity of the proposed algorithm reach 85.36%, 76.64% and 76.25%, respectively. Compared with other algorithms, the proposed algorithm has better segmentation performance.
Keywords:Keywords: U-Net corona virus disease 2019 image segmentation recurrent ResNet self-attention mechanism
点击此处可从《中国医学物理学杂志》浏览原始摘要信息
点击此处可从《中国医学物理学杂志》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号