首页 | 本学科首页   官方微博 | 高级检索  
     

超声图像血管分割的研究进展
引用本文:孙国栋1,石蕴玉1,刘翔1,宋家琳2,赵静文1,浦秀丽1,尹玲1. 超声图像血管分割的研究进展[J]. 中国医学物理学杂志, 2022, 0(4): 453-458. DOI: DOI:10.3969/j.issn.1005-202X.2022.04.011
作者姓名:孙国栋1  石蕴玉1  刘翔1  宋家琳2  赵静文1  浦秀丽1  尹玲1
作者单位:1.上海工程技术大学电子电气工程学院, 上海 201620; 2.第二军医大学附属长征医院超声科, 上海 200003
摘    要:
主要阐述超声图像血管分割算法及其评价指标。基于特征提取的经典图像处理算法不能摆脱对人工的依赖,削弱了分割算法的泛化能力;但对于缺乏大样本超声血管图像的研究场景下,充分利用传统且成熟的技术方法却是一种可行的研究办法。基于机器学习的算法提高了分割算法的泛化能力,改善了传统方法的短板;但深度学习技术对数据的依赖性强、可解释性差,其算法的有效性、稳定性还需深入研究。血管分割评价算法的研究极其重要,研究适合超声图像血管分割的客观评价方法也是重要课题之一。总之,传统方法仍然是解决超声图像血管分割的有效方法,传统方法与深度学习技术的紧密结合是未来的发展趋势。

关 键 词:超声图像  特征提取  机器学习  血管分割  综述

Advances in blood vessel segmentation in ultrasound image
SUN Guodong1,SHI Yunyu1,LIU Xiang1,SONG Jialin2,ZHAO Jingwen1,PU Xiuli1,YIN Ling1. Advances in blood vessel segmentation in ultrasound image[J]. Chinese Journal of Medical Physics, 2022, 0(4): 453-458. DOI: DOI:10.3969/j.issn.1005-202X.2022.04.011
Authors:SUN Guodong1  SHI Yunyu1  LIU Xiang1  SONG Jialin2  ZHAO Jingwen1  PU Xiuli1  YIN Ling1
Affiliation:1. School of Electrical and Electronic Engineering, Shanghai University of Engineering Science, Shanghai 201620, China 2. Department of Ultrasound, Changzheng Hospital Affiliated to the Second Military Medical University, Shanghai 200003, China
Abstract:
Abstract: The blood vessel segmentation algorithm for ultrasound image and its evaluation indexes are mainly reviewed. Although the classical image processing algorithms based on feature extraction cant get rid of the reliance on manual labor, it is a feasible research approach to make full use of the traditional and mature technical methods in the research scenario where there is a lack of large samples of ultrasound blood vessel images. The algorithms based on machine learning improve the generalization ability of segmentation algorithm and overcome the shortcomings of the traditional methods. However, deep learning techniques have strong dependence on data and poor interpretability, and their effectiveness and stability need to be further studied. The study on blood vessel segmentation evaluation algorithms is critical, and finding the objective evaluation methods suitable for segmentation of blood vessels in ultrasound images is one of the important topics. In conclusion, the traditional method is still an effective method to complete the blood vessel segmentation in ultrasound images, and the combination of the traditional method and deep learning techniques is the future development trend.
Keywords:Keywords: ultrasound image feature extraction machine learning vessel segmentation review
点击此处可从《中国医学物理学杂志》浏览原始摘要信息
点击此处可从《中国医学物理学杂志》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号