Vibration Fatigue of FDM 3D Printed Structures: The Use of Frequency Domain Approach |
| |
Authors: | Massimiliano Palmieri Guido Zucca Giulia Morettini Luca Landi Filippo Cianetti |
| |
Affiliation: | 1.Deparment of Engineering, University of Perugia, Via G. Duranti 93, 06125 Perugia, Italy; (G.M.); (L.L.); (F.C.);2.Italian Air Force, Aeronautical and Space Test Division, Via Pratica di Mare, 00040 Pomezia, Italy; |
| |
Abstract: | Additive manufactured structures are replacing the corresponding ones realized with classical manufacturing technique. As for metallic structures, 3D printed components are generally subjected to dynamic loading conditions which can lead to fatigue failure. In this context, it is useful, and sometimes mandatory, to determine the fatigue life of such components through numerical simulation. The methods currently available in literature for the estimation of fatigue life were originally developed for metallic structures and, therefore, it is now necessary to verify their applicability also for components fabricated with different materials. To this end, in the current activity three of the most used spectral methods for the estimation of fatigue life were used to determine the fatigue life of a 3D printed Y-shaped specimen realized in polylactic acid subjected to random loads with the aim of determining their adaptability also for this kind of materials. To certify the accuracy of the numerical prediction, a set of experimental tests were conducted in order to obtain the real fatigue life of the component and to compare the experimental results with those numerically obtained. The obtained outcomes showed there is an excellent match between the numerical and the experimental data, thus certifying the possibility of using the investigated spectral methods to predict the fatigue life of additive manufactured components. |
| |
Keywords: | vibration fatigue 3D printed structures fatigue damage spectral methods |
|
|