首页 | 本学科首页   官方微博 | 高级检索  
     


Contact-dependent aggregation of functional Ca2+ channels, synaptic vesicles and postsynaptic receptors in active zones of a neuromuscular junction
Authors:David A. DiGregorio  Oscar Negrete  reas Jeromin  H. Benjamin Peng   Julio L. Vergara
Affiliation:Department of Physiology, UCLA School of Medicine, Los Angeles, CA 90095, USA.
Abstract:To examine whether Ca2+ channels aggregate in a contact-dependent manner, we characterized the distribution of synaptic vesicles and postsynaptic receptors, and compared it to the location of Ca2+ entry sites, in a Xenopus laevis nerve-muscle coculture preparation using a localized Ca2+ detection method. The majority (75%) of Ca2+ entry sites at spontaneously formed nerve-muscle contacts were associated with enhanced immunofluorescence to the synaptic vesicle protein, SV2. In contrast, only 11% of recorded sites without Ca2+ transients exhibited significant SV2 immunofluorescence. When comparing the spatial distribution of synaptic markers with that of Ca2+ entry sites, we found that the majority of Ca2+ entry sites (61%) were associated with both enhanced SV2 immunofluorescence and R-BTX fluorescence, thereby identifying putative neurotransmitter release sites where Ca2+ channels, synaptic vesicles and postsynaptic receptors are colocalized. Using polystyrene beads coated with a heparin binding protein known to mediate in vitro postsynaptic receptor clustering, we show that the location of Ca2+ domains was associated with enhanced SV2 immunofluorescence at neurite-to-bead contacts. We conclude that the localization of functional Ca2+ channels to putative active zones follows a contact-dependent signalling mechanism similar to that known to mediate vesicle aggregation and AChR clustering.
Keywords:Ca2+ domains    synaptic transmission    synaptogenesis    Xenopus laevis
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号