首页 | 本学科首页   官方微博 | 高级检索  
     


Involvement of the Wnt signaling pathway in experimental and human osteoarthritis: Prominent role of Wnt‐induced signaling protein 1
Authors:Arjen B. Blom  Sarah M. Brockbank  Peter L. van Lent  Henk M. van Beuningen  Jeroen Geurts  Nozomi Takahashi  Peter M. van der Kraan  Fons A. van de Loo  B. Wim Schreurs  Kristen Clements  Peter Newham  Wim B. van den Berg
Abstract:

Objective

Wnt signaling pathway proteins are involved in embryonic development of cartilage and bone, and, interestingly, developmental processes appear to be recapitulated in osteoarthritic (OA) cartilage. The present study was undertaken to characterize the expression pattern of Wnt and Fz genes during experimental OA and to determine the function of selected genes in experimental and human OA.

Methods

Longitudinal expression analysis was performed in 2 models of OA. Levels of messenger RNA for genes from the Wnt/β‐catenin pathway were determined in synovium and cartilage, and the results were validated using immunohistochemistry. Effects of selected genes were assessed in vitro using recombinant protein, and in vivo by adenoviral overexpression.

Results

Wnt‐induced signaling protein 1 (WISP‐1) expression was strongly increased in the synovium and cartilage of mice with experimental OA. Wnt‐16 and Wnt‐2B were also markedly up‐regulated during the course of disease. Interestingly, increased WISP‐1 expression was also found in human OA cartilage and synovium. Stimulation of macrophages and chondrocytes with recombinant WISP‐1 resulted in interleukin‐1–independent induction of several matrix metalloproteinases (MMPs) and aggrecanase. Adenoviral overexpression of WISP‐1 in murine knee joints induced MMP and aggrecanase expression and resulted in cartilage damage.

Conclusion

This study included a comprehensive characterization of Wnt and Frizzled gene expression in experimental and human OA articular joint tissue. The data demonstrate, for the first time, that WISP‐1 expression is a feature of experimental and human OA and that WISP‐1 regulates chondrocyte and macrophage MMP and aggrecanase expression and is capable of inducing articular cartilage damage in models of OA.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号