Localization of P2X3 receptors and coexpression with P2X2 receptors during rat embryonic neurogenesis. |
| |
Authors: | Kwok-Kuen Cheung Geoffrey Burnstock |
| |
Affiliation: | Autonomic Neuroscience Institute, Royal Free and University College Medical School, Rowland Hill Street, London NW3 2PF, United Kingdom. |
| |
Abstract: | It is well known that extracellular ATP mediates rapid excitatory signaling by means of the ionotropic P2X receptors. One of its subunits, the P2X(3) receptor, is well documented to be associated with sensory innervation in adult animals. It is speculated that the P2X(3) receptor may have already been present in the early sensory system. The aim of this study was to investigate the distribution of the P2X(3) receptor during neurogenesis by using immunohistochemistry on rat embryos from embryonic day (E)9.5-18.5. The P2X(3) receptor was first identified in the hindbrain neural tube and the sensory ganglia in E11-11.5 embryos. At E14.5, the optic tract and retina, nucleus tractus solitarius, mesencephalic trigeminal nucleus, and sensory nerves in both respiratory and digestive tract showed positive staining. The facial nucleus, the prepositus hypoglossal nucleus, and the sympathetic ganglia also showed P2X(3) immunoreactivity, even though these are not sensory associated. P2X(3) immunoreactivity was detected in the vestibular nucleus, the nerves in mesentery, bladder, and kidney in E16.5 and in nerves in vibrissae in E18.5. P2X(3) immunoreactivity in the facial nucleus, spinal trigeminal tract, the mesencephalic trigeminal nucleus, and the vestibular nucleus were undetectable in postnatal day 16 rat brainstem. The P2X(3) receptor was coexpressed with the P2X(2) receptor in nucleus tractus solitarius, dorsal root ganglion, nodose ganglion, and the taste bud in E16.5 embryo, which was 5 days later than the first appearance of the native P2X(3) receptor. In summary, we present a detailed expression pattern of the P2X(3) receptor during neurogenesis and report that P2X(3) immunoreactivity is down-regulated in early postnatal brainstems. |
| |
Keywords: | ATP purinoceptors central nervous system sensory ganglia immunohistochemistry neurogenesis |
|
|