首页 | 本学科首页   官方微博 | 高级检索  
     


Rat pial microvascular responses to melatonin during bilateral common carotid artery occlusion and reperfusion
Authors:Lapi Dominga  Vagnani Sabrina  Cardaci Emilio  Paterni Marco  Colantuoni Antonio
Affiliation:Department of Neuroscience, Federico II University Medical School, Naples, Italy. d.lapi@dfb.unipi.it
Abstract:
The present study assessed the in vivo rat pial microvascular responses induced by melatonin during brain hypoperfusion and reperfusion (RE) injury. Pial microcirculation of male Wistar rats was visualized by fluorescence microscopy through a closed cranial window. Hypoperfusion was induced by bilateral common carotid artery occlusion (BCCAO, 30 min); thereafter, pial microcirculation was observed for 60 min. Arteriolar diameter, permeability increase, leukocyte adhesion to venular walls, perfused capillary length (PCL), and capillary red blood cell velocity (V(RBC) ) were investigated by computerized methods. Melatonin (0.5, 1, 2 mg/kg b.w.) was intravenously administered 10 min before BCCAO and at the beginning of RE. Pial arterioles were classified in five orders according to diameter, length, and branchings. In control group, BCCAO caused decrease in order 2 arteriole diameter (by 17.5 ± 3.0% of baseline) that was reduced by 11.8 ± 1.2% of baseline at the end of RE, accompanied by marked leakage and leukocyte adhesion. PCL and capillary V(RBC) decreased. At the end of BCCAO, melatonin highest dosage caused order 2 arteriole diameter reduction by 4.6 ± 2.0% of baseline. At RE, melatonin at the lower dosages caused different arteriolar responses. The highest dosage caused dilation in order 2 arteriole by 8.0 ± 1.5% of baseline, preventing leakage and leukocyte adhesion, while PCL and V(RBC) increased. Luzindole (4 mg/kg b.w.) prior to melatonin caused order 2 arteriole constriction by 12.0 ± 1.5% of baseline at RE, while leakage, leukocyte adhesion, PCL and V(RBC) were not affected. Prazosin (1 mg/kg b.w.) prior to melatonin did not significantly change melatonin's effects. In conclusion, melatonin caused different responses during hypoperfusion and RE, modulating pial arteriolar tone likely by MT1 and MT2 melatonin receptors while preventing blood-brain barrier changes through its free radical scavenging action.
Keywords:arteriolar tone  bilateral common carotid artery occlusion  melatonin  MT1, MT2, and MT3 melatonin receptors  pial microcirculation  radical oxygen species  reperfusion
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号