首页 | 本学科首页   官方微博 | 高级检索  
     

基于希尔伯特-黄变换和提升小波包相结合的心音信号识别研究
引用本文:江玉柱,张伟,韩立喜,张康,李松,井赛,张科,尹晓峰. 基于希尔伯特-黄变换和提升小波包相结合的心音信号识别研究[J]. 医疗卫生装备, 2014, 35(10): 16-20
作者姓名:江玉柱  张伟  韩立喜  张康  李松  井赛  张科  尹晓峰
作者单位:济南军区联勤部药品仪器检验所,济南,250022
摘    要:
目的:研究基于希尔伯特-黄变换和提升小波包相结合的方法对正常和异常心音信号识别的效果。方法:首先用DB6小波对心音信号进行降噪处理,然后用希尔伯特-黄变换分析提取心音信号的时域、频域特征值,再通过自适应提升小波包提取信号的频带能量特征值,最后通过支持向量机对心音信号进行分类识别。结果:对临床采集的240例异常心音和正常心音进行实验,正确识别率达到97.2%,且运算速度很快。结论:希尔伯特-黄变换和自适应提升小波包相结合的方法可有效识别正常和各种异常的心音信号,值得推广应用。

关 键 词:心音识别  希尔伯特-黄变换  小波包  特征提取

Study on heart sound identification based on combined Hilbert-Huang transform and lifting wavelet package
JIANG Yu-zhu,ZHANG Wei,HAN Li-xi,ZHANG Kang,LI Song,JING Sai,ZHANG Ke,YIN Xiao-feng. Study on heart sound identification based on combined Hilbert-Huang transform and lifting wavelet package[J]. Chinese Medical Equipment Journal, 2014, 35(10): 16-20
Authors:JIANG Yu-zhu  ZHANG Wei  HAN Li-xi  ZHANG Kang  LI Song  JING Sai  ZHANG Ke  YIN Xiao-feng
Affiliation:(Institute for Drug and Instrument Control of Jinan Military Area Command, Jinan 250022, China)
Abstract:
Objective To improve recognition rate of normal and abnormal heart sound signal by the method combing Hilbert-Huang transform and lifting wavelet package. Methods DB6 wavelet was used to denoise the heart sound signal firstly, then HHT transform was applied to extracting the characteristic values for frequency domain and time domain,and self-adaptive lifting wavelet package was mobilized to acquire the characteristic values of the frequency band energy, finally support vector machine was utilized for the classified recognition of the signals. Results Totally 240 cases of abnormal and normal heart sound signals underwent the experiment, with the recognition rate of 97.2% and high calculation speed. Conclusion HHT combined with lifting wavelet package can recognize kinds of normal and abnormal heart sound signals, and thus is worth popularizing practically.
Keywords:heart sound identification  Hilbert-Huang transform  wavelet packet  characteristics extraction
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号