Dephosphorylation of B-50 in synaptic plasma membranes |
| |
Authors: | L A Dokas M R Pisano L H Schrama H Zwiers W H Gispen |
| |
Affiliation: | Department of Neurology, Medical College of Ohio, Toledo 43699. |
| |
Abstract: | Synaptic plasma membranes from rat brain cortex possess intrinsic ability to dephosphorylate the endogenous protein B-50. At low concentrations of [gamma-32P]ATP, B-50 phosphorylation in synaptic membranes is maximal at 30 seconds, followed by dephosphorylation for an additional 60 minutes. The dephosphorylation of 32P-labeled B-50 is not sensitive to the protease inhibitor leupeptin and not correlated with a loss of the B-50 content of synaptic membranes as measured with immunoblot analysis. Dephosphorylation of membrane-associated B-50 is stimulated to a small extent by Mg2+ but not by Ca2+. Heat-stable protein phosphatase inhibitors prevent dephosphorylation of 32P-labeled B-50. Dephosphorylation of B-50 in synaptic membranes is stimulated by ATP, ADP, or adenosine 5'-O-thiotriphosphate, but not by adenine, adenosine, other adenine or guanine nucleotides, nonhydrolyzable analogs of ATP or GTP, nor by adenosine 5'-O-(2-thiodiphosphate). B-50, phosphorylated by exogenous protein kinase C and purified to homogeneity, has been used as a substrate to follow the purification of B-50 phosphatase activity. B-50 phosphatase activity can be solubilized from synaptic membranes with 0.5% Triton X-100 and 75 mM KCl. Chromatography of the extract on DEAE-cellulose yields enhanced B-50 phosphatase activity. |
| |
Keywords: | |
|
|