首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1032篇
  免费   85篇
  国内免费   24篇
耳鼻咽喉   7篇
儿科学   16篇
妇产科学   4篇
基础医学   170篇
口腔科学   13篇
临床医学   73篇
内科学   174篇
皮肤病学   3篇
神经病学   25篇
特种医学   21篇
外科学   64篇
综合类   78篇
预防医学   51篇
眼科学   4篇
药学   361篇
中国医学   42篇
肿瘤学   35篇
  2024年   1篇
  2023年   8篇
  2022年   8篇
  2021年   26篇
  2020年   10篇
  2019年   40篇
  2018年   66篇
  2017年   50篇
  2016年   33篇
  2015年   26篇
  2014年   72篇
  2013年   117篇
  2012年   49篇
  2011年   91篇
  2010年   45篇
  2009年   67篇
  2008年   68篇
  2007年   46篇
  2006年   33篇
  2005年   40篇
  2004年   35篇
  2003年   21篇
  2002年   17篇
  2001年   19篇
  2000年   9篇
  1999年   15篇
  1998年   7篇
  1997年   12篇
  1996年   4篇
  1995年   7篇
  1994年   4篇
  1993年   4篇
  1992年   7篇
  1991年   5篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   3篇
  1986年   1篇
  1985年   16篇
  1984年   14篇
  1983年   10篇
  1982年   7篇
  1981年   9篇
  1980年   5篇
  1979年   3篇
  1978年   4篇
  1977年   2篇
  1975年   1篇
排序方式: 共有1141条查询结果,搜索用时 15 毫秒
1.
2.
In addition to their solubilizing properties, excipients used in lipid-based formulations can improve intestinal permeability of macromolecules. We determined whether admixing of medium-chain fatty acid (MCFA) permeation enhancers with a lipoidal excipient (Labrasol®) could potentiate transepithelial flux of a poorly permeable macromolecule (fluorescein isothiocyanate dextran 4 kDa [FD4]) across rat intestinal mucosae mounted in Ussing chambers. Low concentrations of sodium caprate (C10), sodium undecylenate (C11:1), or sodium laurate (C12) combined with Labrasol® increased the apparent permeability coefficient (Papp) of FD4 to values typically seen with higher concentrations of MCFAs or Labrasol® alone. For example, combination of C11:1 (0.5 mg/mL) with Labrasol® (1 mg/mL) increased the Papp of FD4 by 10- and 11-fold over the respective individual agents at the same concentrations where no enhancement was evident. The increased enhancement ratios seen with the combinations were associated with some perturbation in intestinal histology and with attenuation of an epithelial functional measure, carbachol-stimulated inward short-circuit current. In conclusion, combining three MCFAs separately with Labrasol® increased the Papp of FD4 to values greater than those seen for MCFAs or Labrasol® alone. Ultimately, this may permit lower concentrations of MCFA to be used in combination with other excipients in oral formulations of poorly permeable molecules.  相似文献   
3.
4.
Breast cancer resistance protein (BCRP) transporter is an efflux transporter that utilizes energy from adenosine triphosphate hydrolysis to push its substrates, regardless of the concentration gradient. Its presence on the apical membrane of the intestinal mucosa is a major obstacle for the intestinal absorption of its substrates. In this study, we examined the effects of various pharmaceutical excipients on the intestinal transport and absorption of sulfasalazine, a BCRP substrate. Four excipients, including 0.05% and 0.075% BL-9EX, 0.01% and 0.05% Brij 97, 0.075% Labrasol, and 0.05% and 0.1% Tween 20 decreased the secretory transport of sulfasalazine in an in vitro diffusion chamber. Further investigation in an in situ closed loop experiment in rats showed that 0.05% and 0.1% BL-9EX and 0.1% Brij 97 effectively enhanced the intestinal absorption of sulfasalazine while maintaining minimal toxicity to the intestinal mucosa. However, 0.1% Brij 97 also increased the intestinal absorption of 5(6)-carboxyfluorescein, a paracellular marker compound. These findings suggest that BL-9EX might effectively inhibit the BCRP-mediated efflux of sulfasalazine in vivo, indicating that BL-9EX could improve the intestinal absorption of sulfasalazine and other BCRP substrates.  相似文献   
5.
The tripeptide sequence asparagine‐glycine‐arginine (NGR) specifically recognizes aminopeptidase N (APN or CD13) receptors highly expressed on tumor cells and vasculature. Thus, NGR peptides can precisely deliver therapeutic and diagnostic compounds to CD13 expressing cancer sites. In this regard, 2 NGR peptide ligands, HYNIC‐c(NGR) and HYNIC‐PEG2‐c(NGR), were synthesized, radiolabeled with 99mTc, and evaluated in CD13‐positive human fibrosarcoma HT‐1080 tumor xenografts. The radiotracers, 99mTc‐HYNIC‐c(NGR) and 99mTc‐HYNIC‐PEG2‐c(NGR), could be prepared in approximately 95% radiochemical purity and exhibited excellent in vitro and in vivo stability. The radiotracers were hydrophilic in nature with log P values being ?2.33 ± 0.05 and ?2.61 ± 0.08. The uptake of 2 radiotracers 99mTc‐HYNIC‐c(NGR) and 99mTc‐HYNIC‐PEG2‐c(NGR) was similar in nude mice bearing human fibrosarcoma HT‐1080 tumor xenografts, which was significantly reduced (P < .05) during blocking studies. The 2 radiotracers being hydrophilic cleared rapidly from blood, liver, and intestine and were excreted through renal pathway. The pharmacokinetics of 99mTc‐labeled HYNIC peptide could not be modulated through introduction of PEG2 unit, thus posing a challenge for studies with other linkers towards enhanced tumor uptake and retention.  相似文献   
6.
We demonstrate the coating of tablets using an injection molding (IM) process that has advantage of being solvent free and can provide precision coat features. The selected core tablets comprising 10% w/w griseofulvin were prepared by an integrated hot melt extrusion-injection molding (HME-IM) process. Coating trials were conducted on a vertical injection mold machine. Polyethylene glycol and polyethylene oxide based hot melt extruded coat compositions were used. Tablet coating process feasibility was successfully demonstrated using different coating mold designs (with both overlapping and non-overlapping coatings at the weld) and coat thicknesses of 150 and 300?μm. The resultant coated tablets had acceptable appearance, seal at the weld, and immediate drug release profile (with an acceptable lag time). Since IM is a continuous process, this study opens opportunities to develop HME-IM continuous processes for transforming powder to coated tablets.  相似文献   
7.
Here, we aimed to develop protein loaded microspheres (MSs) using penta-block PLGA-based copolymers to obtain sustained and complete protein release. We varied MS morphology and studied the control of protein release. Lysozyme was used as a model protein and MSs were prepared using the solid-in-oil-in-water emulsion solvent extraction method. We synthesized and studied various penta-block PLGA-based copolymers. Copolymer characteristics (LA/GA ratio and molecular weight of PLGA blocks) influenced MS morphology. MS porosity was influenced by process parameters (such as solvent type, polymer concentration, emulsifying speed), whereas the aqueous volume for extraction and stabilizer did not have a significant effect. MSs of the same size, but different morphologies, exhibited different protein release behavior, with porous structures being essential for the continuous and complete release of encapsulated protein. These findings suggest strategies to engineer the morphology of MSs produced from PLGA-based multi-block copolymers to achieve appropriate release rates for a protein delivery system.  相似文献   
8.
张羽  连治国  徐明波  冯芳 《药学实践杂志》2018,36(4):301-306,328
聚乙二醇及其衍生物因其出色的亲水性、生物相容性、生物学惰性等特性而被广泛应用于蛋白药物修饰,其修饰可有效降低蛋白药物的免疫原性并延长体内半衰期。聚乙二醇衍生物的发展经历了第一代随机修饰,第二代特异性和功能性修饰,以及第三代分支型结构的应用。其应用也从简单的药物修饰扩展到生物传感、药物传输等方面。  相似文献   
9.
The development of hydrogel films as wound healing dressings is of a great interest owing to their biological tissue-like nature. Polyvinyl alcohol/polyethylene glycol (PVA/PEG) hydrogels loaded with asiaticoside, a standardized rich fraction of Centella asiatica, were successfully developed using the freeze–thaw method. Response surface methodology with Box–Behnken experimental design was employed to optimize the hydrogels. The hydrogels were characterized and optimized by gel fraction, swelling behavior, water vapor transmission rate and mechanical strength. The formulation with 8% PVA, 5% PEG 400 and five consecutive freeze–thaw cycles was selected as the optimized formulation and was further characterized by its drug release, rheological study, morphology, cytotoxicity and microbial studies. The optimized formulation showed more than 90% drug release at 12?hours. The rheological properties exhibited that the formulation has viscoelastic behavior and remains stable upon storage. Cell culture studies confirmed the biocompatible nature of the optimized hydrogel formulation. In the microbial limit tests, the optimized hydrogel showed no microbial growth. The developed optimized PVA/PEG hydrogel using freeze–thaw method was swellable, elastic, safe, and it can be considered as a promising new wound dressing formulation.  相似文献   
10.
Abstract

Purpose: Artemisinin (ART) has anti-inflammatory, antimicrobial, antioxidant, anti-amyloid, and anti-malarial effects, but its application is limited due to its low water solubility and poor oral bioavailability. In this study, the bioavailability, water solubility, and anti-plasmodial property of ART were improved by PCL–PEG–PCL tri-block copolymers.

Methods: The structure of the copolymers was characterized by 1H NMR, FT-IR, DSC, and GPC techniques. ART was encapsulated within micelles by a single-step nano-precipitation method, leading to the formation of ART-loaded PCL–PEG–PCL micelles. The obtained micelles were characterized by dynamic light scattering (DLS) and atomic force microscopy (AFM). The in vivo anti-plasmodial activity of ART-loaded micelles was measured against Plasmodium berghei infected Swiss albino mice.

Results: The results showed that the zeta potential of ART-loaded micelles was about ?8.37?mV and the average size was 91.87?nm. ART was encapsulated into PCL–PEG–PCL micelles with a loading capacity of 19.33?±?0.015% and encapsulation efficacy of 87.21?±?3.32%. In vivo anti-plasmodial results against P. berghei showed that multiple injections of ART-loaded micelles could prolong the circulation time and increase the therapeutic efficacy of ART.

Conclusion: These results suggested that PCL–PEG–PCL micelles would be a potential carrier for ART for the treatment of malaria.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号