首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   1篇
  国内免费   1篇
基础医学   1篇
口腔科学   1篇
临床医学   3篇
综合类   3篇
药学   37篇
  2022年   1篇
  2017年   1篇
  2015年   1篇
  2014年   3篇
  2013年   12篇
  2011年   3篇
  2010年   1篇
  2009年   6篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2005年   3篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1996年   3篇
  1995年   1篇
排序方式: 共有45条查询结果,搜索用时 15 毫秒
1.
The objective of our study was to formulate a sustained-release tablet of Ketorolac tromethamine, which is a nonsteroidal anti-inflammatory agent. A 2 3 full factorial design (8 runs) was selected. The variables studied were the amount of drug (30 and 40 mg), ratio of hydroxypropyl methylcellulose (HPMC)/sodium carboxymethylcellulose (NaCMC) (240/40 and 140/140 mg), and amount of ethylcellulose (140 and 180 mg). Swelling-controlled matrix tablets were manufactured by direct compression of formulation ingredients using a Stokes single punch tablet press. Dissolution tests were performed using USP apparatus 3 (Bio-Dis II), at various pHs to mimic the conditions that exist in the gastrointestinal tract. Responses studied included time for 50% of the drug to dissolve (T 50), diffusional exponent (n) that characterizes the release mechanism, and percent friability of the tablets. Analysis of variance indicated that the release rate (T 50) was affected by the HPMC/NaCMC ratio, amount of drug, and two-way and three-way interactions; whereas the amount of drug, HPMC/NaCMC ratio, ethylcellulose, and the interaction between drug and HPMC/NaCMC and HPMC/NaCMC and ethylcellulose and also three-way interactions were significantly affecting the diffusional exponent (n) . The release mechanism was found to be super-case II transport. The friability of the tablets was significantly affected by all three factors: amount of drug, HPMC/NaCMC ratio, and amount of ethylcellulose. The formulation giving the best release characteristics was identified.  相似文献   
2.
Different types of ethylcellulose-based mini-matrices were prepared by hot-melt extrusion and thoroughly characterized in vitro. Metoprolol tartrate was used as model drug, and various amounts and types of polyethylene glycol (PEG)/polyethylene oxide (PEO) were added as release rate modifiers. Based on the experimental results, appropriate mathematical theories were identified/developed, allowing for a better understanding of the underlying drug release mechanisms. For instance, it could be shown that at high initial PEG/PEO contents and/or intermediate initial PEG/PEO contents of low molecular weight, drug diffusion with time- and position-independent diffusivities is predominant. In contrast, at low initial PEG/PEO contents and intermediate initial PEG/PEO contents of high molecular weight, the time- and position-dependent dynamic changes in the matrix porosities significantly affect the conditions for drug and PEG/PEO diffusion. These dynamic changes must be taken into account in the mathematical model. Importantly, the proposed theories are mechanistic realistic and also allow for the quantitative prediction of the effects of the device design on the resulting drug release patterns. Interestingly, these quantitative predictions could be confirmed by independent experiments. Furthermore, Raman spectroscopy allowed for the determination of the resulting drug concentration-position profiles within the mini-matrices as a function of time and confirmed the theoretical predictions.  相似文献   
3.
氧氟沙星控释人工骨的制备及释药机理的探讨   总被引:5,自引:1,他引:4  
以蜂蜡和乙基纤维素为阻滞剂,包裹羟基磷灰石生物陶瓷人工骨(PHA),内载药物氧氟沙星(OFLX),制成氧氟沙星控释人工骨(OFLX-PHA)。对OFLX-PHA进行了体外释药量实验。探讨PHA包裹阻滞剂后,药物OFLX的释放规律,以及影响OFLX-PHA释药速率的因素。  相似文献   
4.
A new oral drug delivery system for colon targeting has been developed based on enteric-coated matrix tablets which suitably exploits both pH-sensitive and time-dependent functions. Matrix-tablets were prepared by direct compression of mixtures of hydroxyethylcellulose (HEC), a hydrophilic swellable polymer, with the inert insoluble ethylcellulose (EC) or micro-crystalline cellulose (MCC) polymers, in which theophylline, selected as model drug, was dispersed. Eudragit S100, a methacrylic acid copolymer soluble at pH 7, was used as pH-sensitive coating polymer. The influence of varying the cellulose-derivative combinations and their relative ratios as well as the level of the coating polymer was investigated. Surface morphology of the tablets was monitored by SEM analysis before and after the release test. The results of release studies, performed according to the USP basket method using a sequence of dissolution media simulating the gastrointestinal physiological pH variation, indicated that the Eudragit S100 enteric-coated matrix tablets were successful in achieving gastric resistance and timed-release of the drug, assuring an adequate lag time for the intended colonic targeting, followed by a controlled-release phase. The enteric-coating level emerged as the critical factor in determining the duration of the lag-phase, whereas the release rate mainly depended on the matrix composition. Formulations with higher HEC content showed a faster drug release rate than those with greater content in inert polymer and the MCC–HEC combinations were more effective than the corresponding EC–HEC ones. The best results were given by the 27% coated 1:0.3:0.7 (w/w) drug/MCC/HEC tablets, which, after a 260 min lag time, regularly released the drug, achieving about 90% of release after 10 h.  相似文献   
5.
The aim of this study was to develop ethylcellulose microspheres for prolonged drug delivery with reduced burst effect. Ethylcellulose microspheres loaded with ibuprofen were prepared with and without polystyrene, which was used to retard drug release from ethylcellulose microspheres. Ibuprofen-loaded ethylcellulose microspheres with a polystyrene content of 0–25% were prepared by the solvent evaporation technique and characterized by drug loading, infrared spectroscopy, differential scanning calorimetry and scanning electron microscopy. The in vitro release studies were performed to study the influence of polystyrene on ibuprofen release from ethylcellulose microspheres. The microspheres showed 28–46% of drug loading and 80–92% of entrapment, depending on polymer/drug ratio. The infrared spectrum and thermogram showed stable character of ibuprofen in the microspheres and revealed an absence of drug polymer interaction. The prepared microspheres were spherical in shape and had a size range of 0.1–4μm. Ethylcellulose/polystyrene micro-spheres showed prolonged drug release and less burst effect when compared to microspheres prepared with ethylcellulose alone. Microspheres prepared with an ethylcellulose/polystyrene ratio of 80:20 gave a required release pattern for oral drug delivery. The presence of polystyrene above this ratio gave release over 24 h. To find out the mechanism of drug release from ethylcellulose/polystyrene microspheres, the data obtained from in vitro release were fitted in various kinetic models. High correlation was obtained in Higuchi and Korsmeyer-Peppas models. The drug release from ethylcellulose/polystyrene microspheres was found to be diffusion controlled.  相似文献   
6.
Although mucoadhesive drug carriers for the gastro-intestinal tract (GIT) have been reported, the mucoadhesive property and drug release characteristics have never been evaluated separately, whilst the adherence of the carriers to the surface of GIT has not been directly visualized. Here, a monopolymeric carrier made from ethylcellulose (EC) and a dipolymeric carrier made from a blend of methylcellulose (MC) and EC (ECMC) were easily fabricated through a self-assembling process and yielded the highest reported curcumin loading of ~ 48-49%. Both curcumin loaded ECMC (C-ECMC) and curcumin loaded EC (C-EC) particles showed an in vitro free radical scavenging activity and a dose-dependent in vitro cytotoxic effect towards MCF-7 human breast adenocarcinoma and HepG2 hepatoblastoma cells in tissue culture. The in vivo evaluation of their adherence to stomach mucosa and their ability to release curcumin into the circulation were carried out through quantification of curcumin levels in the stomach tissue and in blood of mice orally administered with the two spheres. Direct evidence of the adherence of the C-EC and C-ECMC particles along the mucosal epithelia of the stomach is also presented for the first time through SEM images. The mucoadhesive property of self-assembled C-EC nanoparticles is discussed.  相似文献   
7.
Weakly basic drugs and their salts exhibit a decrease in aqueous solubility at higher pH, which can result in pH-dependent or even incomplete release of these drugs from extended release formulations. The objective of this study was to evaluate strategies to set-off the very strong pH-dependent solubility (solubility: 80 mg/ml at pH 2 and 0.02 mg/ml at pH 7.5, factor 4000) of a mesylate salt of weakly basic model drug (pKa 6.5), in order to obtain pH-independent extended drug release. Three approaches for pH-independent release were investigated: (1) organic acid addition in the core, (2) enteric polymer addition to the extended release coating and (3) an enteric polymer subcoating below the extended release coating. The layering of aspartic acid onto drug cores as well as the coating of drug cores with an ethylcellulose/Eudragit L (enteric polymer) blend were not effective to avoid the formation of the free base at pH 7.5 and thus failed to significantly improve the completeness of the release compared to standard ethylcellulose/hydroxypropyl cellulose (EC/HPC)-coated drug pellets. Interestingly, the incorporation of an enteric polymer layer underneath the EC/HPC coating decreased the free base formation at pH 7.5 and thus resulted in a more complete release of up to 90% of the drug loading over 18 h. The release enhancing effect was attributed to an extended acidification through the enteric polymer layer. Flexible release patterns with approximately pH-independent characteristics were successfully achieved.  相似文献   
8.
The aim of the present study was to solve the water insolubility limitation of the medically and cosmetically interesting substance Garcinia mangostana Linn (GML) extract by encapsulation, and to evaluate and investigate the penetration efficacy of free and encapsulated GML in two different vehicles (water and cream) in porcine ear skin. The follicular penetration depth was determined in 50 hair follicles for each of the four formulations by means of fluorescence microscopy. Tape stripping was used to compare the distribution properties of GML with all formulations on the stratum corneum. The results showed that encapsulated and free GML in the cream base penetrated deeper into hair follicles than if applied in an aqueous base. In addition, encapsulated GML could be distributed more homogeneously on the stratum corneum than the free GML. In conclusion, it was found that encapsulated GML in a cream base had the most effective penetration level in porcine ear skin.  相似文献   
9.
在咨询调研的基础上对比了国内外4家乙基纤维素生产企业的产品类型以及黏度范围,对乙基纤维素的基本概况进行了简要介绍;以文献为主要依据综述了乙基纤维素近年的应用情况,以期了解乙基纤维素的研究概况,为药用新辅料及新剂型的研究提供参考。  相似文献   
10.
Mini-matrices with release-sustaining properties were developed by hot-melt extrusion (diameter 3 mm, height 2 mm) using metoprolol tartrate as model drug (30%, w/w) and ethylcellulose as sustained-release agent. Polyethylene glycol or polyethylene oxide was added to the formulation to increase drug release. Changing the hydrophilic polymer concentration (0%, 1%, 2.5%, 5%, 10%, 20% and 70%, w/w) and molecular weight (6000, 100,000, 1,000,000 and 7,000,000) modified the in vitro drug release: increasing concentrations yielded faster drug release (irrespective of molecular weight), whereas the influence of molecular weight depended on concentration. Smooth extrudates were obtained when processed at 40 and 70 °C for polyethylene glycol and polyethylene oxide formulations, respectively. Raman analysis revealed that metoprolol tartrate was homogeneously distributed in the mini-matrices, independent of hydrophilic polymer concentration and molecular weight. Also drug and polymer crystallinity were independent of both parameters. An oral dose of 200 mg metoprolol tartrate was administered to dogs in a randomized order either as immediate-release preparation (Lopresor® 100), as sustained-release formulation (Slow-Lopresor® 200 Divitabs®), or as experimental mini-matrices (varying in hydrophilic polymer concentration). The sustained-release effect of the experimental formulations was limited, and relative bioavailabilities of 66.2% and 148.2% were obtained for 5% and 20% PEO 1,000,000 mini-matrices, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号