首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   344篇
  国内免费   4篇
  完全免费   28篇
  神经病学   376篇
  2019年   3篇
  2018年   14篇
  2017年   5篇
  2016年   11篇
  2015年   3篇
  2014年   11篇
  2013年   12篇
  2012年   16篇
  2011年   25篇
  2010年   13篇
  2009年   29篇
  2008年   22篇
  2007年   15篇
  2006年   38篇
  2005年   11篇
  2004年   8篇
  2003年   6篇
  2002年   12篇
  2001年   9篇
  1999年   12篇
  1998年   12篇
  1997年   10篇
  1996年   10篇
  1995年   2篇
  1994年   1篇
  1993年   6篇
  1992年   2篇
  1991年   1篇
  1990年   4篇
  1989年   2篇
  1988年   4篇
  1987年   6篇
  1986年   11篇
  1985年   9篇
  1984年   7篇
  1983年   3篇
  1982年   4篇
  1981年   3篇
  1980年   3篇
  1979年   1篇
排序方式: 共有376条查询结果,搜索用时 31 毫秒
1.
The regenerative capacity of the adult central nervous system is limited. We investigated whether short-term food restriction (FR; 50% of the daily food intake lasting 3 months) modulates processes of brain plasticity after cortical injury. Quantitative changes of growth-associated protein 43 (GAP-43) and synaptophysin (SYP) mRNA levels in the ipsilateral cortex of the adult rat during the recovery period (from 2 to 28 days) after injury were investigated by real-time RT-PCR. Using Western blot and immunohistochemical analyses we examined the levels and localization of proteins involved in neuronal plasticity, SYP and GAP-43, as well as glial fibrillary acidic protein (GFAP), a marker of glial plasticity. A marked rise in GAP-43 and SYP immunoreactivity observed in the FR group on the 7th day after injury pointed to increases in axonal branching and synapses in the cortex surrounding the lesion. The appearance of reactive astrocytes was accompanied by the absence of immunoreactivity for GAP-43 and SYP in ad libitum fed animals. This finding supports the hypothesis that morphological hypertrophy of astrocytes associated with GFAP synthesis is responsible either directly or indirectly for the inhibitory role of activated glia on axonal regeneration. Examination of the effects of FR on serum corticosterone and glucose concentrations and GAP-43, SYP and GFAP expression revealed that FR facilitated recovery of the injured region by attenuating reactive astrogliosis and enhancing the expression of neuronal plasticity markers.  相似文献
2.
Phoneutria nigriventer spider venom (PNV) causes uneven BBB permeability throughout different cerebral regions. Little is known about cellular and molecular responses which course with the PNV-induced BBB opening. We investigate by immunohistochemistry (IHC) and Western blotting (WB), the GFAP, S100, IFN-γ and TNF-α proteins expression in hippocampus and cerebellum after different time-points from venom or saline intravenous injection. All proteins variably altered its expression temporally and regionally. WB showed increased GFAP content at 15–45 min followed by a shift below the control level which was less pronounced in hippocampus. IHC showed reactive gliosis during all the trial period. In cerebellum, GFAP was mostly immunodetected in astrocytes of the molecular layer (Bergmann glia), as was S100 protein. The maximum S100 immunolabeling was achieved at 5 h. IFN-γ and TNF-α, expressed mostly by hippocampal neurons, increased along the trial period, suggesting a role in BBB permeability. In envenomed animals, closer contacts astrocyte–astrocyte, granule cells–granule cells and astrocytes-Purkinje cells were observed in cerebellum. Closer contacts between neurons–neurons–astrocytes–astrocytes were also seen in hippocampus. PNV contains serotonin, histamine, Ca2+ channels-blocking toxins, some of which affect glutamate release. The hypothesis that such substances plus the cytokines generated, could have a role in BBB permeability, and that calcium homeostasis loss and disturbance of glutamate release are associated with the marked GFAP/S100 reaction in Bergmann glia is discussed. The existence of a CNS mechanism of defense modulated differentially for fast synthesis and turnover of GFAP, S100, IFN-γ and TNF-α proteins was evident. A clear explanation for this differential modulation is unclear, but likely result from regional differences in astrocytic/neuronal populations, BBB tightness, and/or extent/distribution of microvasculature and/or ion channels density/distribution. Such differences would respond for transient characteristics of BBB disruption. This in vivo model is useful for studies on drug delivery throughout the CNS and experimental manipulation of the BBB.  相似文献
3.
The central levels of endogenous tryptophan metabolite kynurenic acid (KYNA), an antagonist of N-methyl-d-aspartate (NMDA) and α7-nicotinic receptors, affect glutamatergic and dopaminergic neurotransmission. Here, we demonstrate that selective agonists of β1-receptors (xamoterol and denopamine), β2-receptors (formoterol and albuterol), α- and β-receptors (epinephrine), 8pCPT-cAMP and 8-Br-cAMP (analogues of cAMP) increase the production of KYNA in rat brain cortical slices and in mixed glial cultures. Neither betaxolol, β1-adrenergic antagonist, nor timolol, a non-selective β1,2-adrenergic antagonist has influenced synthesis of KYNA in both paradigms. In contrast, KT5720, a selective inhibitor of protein kinase A (PKA), strongly reduced KYNA formation in cortical slices (2–10 µM) and in glial cultures (100 nM). β-adrenergic antagonists and KT5720 prevented the β-adrenoceptor agonists-induced increases of KYNA synthesis. In vivo, β-adrenergic agonist clenbuterol (0.1–1.0 mg/kg) increased the cortical endogenous level of KYNA; the effect was blocked with propranolol (10 mg/kg). β-adrenoceptors agonists, cAMP analogues and KT5720 did not affect directly the activity of KAT I or KAT II measured in partially purified cortical homogenate. In contrast, the exposure of intact cultured glial cells to pCPT-cAMP, 8-Br-cAMP and formoterol has lead to an enhanced action of KATs. These findings demonstrate that β-adrenoceptor-mediated enhancement of KYNA production is a cAMP- and PKA-dependent event. PKA activity appears to be an essential signal affecting KYNA formation. Described here novel mechanism regulating KYNA availability may be of a potential importance, considering that various stimuli, among them clinically used drugs, activate cAMP/PKA pathway, and thus could counteract the central deficits of KYNA.  相似文献
4.
Adult neurogenesis occurs in the subgranular zone (SGZ) and subventricular zone (SVZ). New SGZ neurons migrate into the granule cell layer of the dentate gyrus (DG). New SVZ neurons seem to enter the association neocortex and entorhinal cortex besides the olfactory bulb. Alzheimer disease (AD) is characterized by neuron loss in the hippocampus (DG and CA1 field), entorhinal cortex, and association neocortex, which underlies the learning and memory deficits. We hypothesized that, if the AD brain can support neurogenesis, strategies to stimulate the neurogenesis process could have therapeutic value in AD. We reviewed the literature on: (a) the functional significance of adult-born neurons; (b) the occurrence of endogenous neurogenesis in AD; and (c) strategies to stimulate the adult neurogenesis process. We found that: (a) new neurons in the adult DG contribute to memory function; (b) new neurons are generated in the SGZ and SVZ of AD brains, but they fail to differentiate into mature neurons in the target regions; and (c) numerous strategies (Lithium, Glatiramer Acetate, nerve growth factor, environmental enrichment) can enhance adult neurogenesis and promote maturation of newly generated neurons. Such strategies might help to compensate for the loss of neurons and improve the memory function in AD.  相似文献
5.
6.
Alexander disease is classified as one of the leukodystrophies, which are degenerative diseases primarily affecting the cerebral white matter. Formal diagnosis is achieved by showing diffuse accumulation of Rosenthal fibers in the brain by biopsy or autopsy. Showing a heterozygous mutation in the glial fibrillary acidic protein (GFAP) gene is currently sufficient for diagnosis. The mechanisms of Rosenthal fiber formation remain unclear. However, both the quality and quantity of GFAP are important. GFAP-ε (rodent homologous GFAP-δ), one of the alternatively spliced GFAP isoforms, may also play a modulating role in aggregate formation. The current ease of diagnosis has accelerated the accumulation of a wide variety of patients with Alexander disease along with the widespread use of MRI. In contrast to the classical infantile type, patients with juvenile and adult types mainly complain of bulbar symptoms and usually show progressive atrophy of the lower brainstem and cervical spinal cord with mild or minimal leukodystrophic changes. Among the many MRI findings of Alexander disease, periventricular linear lesions with various names depending on the thickness and shape seem to represent the unique pathophysiology, because the subventricular zone of the adult human brain includes special astrocytes that behave as multipotent progenitor cells and specifically produce GFAP-ε. Except for a few mutations, no clear phenotype–genotype correlation has been established for Alexander disease, although male preponderance in the infantile type suggests that phenotypes may be partly affected by gender.  相似文献
7.
In the developing CNS, the manifestation of the macroglial phenotypes is delayed behind the formation of neurons. The “neurons first – glia second” principle seems to be valid for neural tissue differentiation throughout the neuraxis, but the reasons behind are far from clear. In the presented study, the mechanisms of this timing were investigated in vitro, in the course of the neural differentiation of one cell derived NE-4C neuroectodermal stem and P19 embryonic carcinoma cells. The data demonstrated that astrocyte formation coincided in time with the maturation of postmitotic neurons, but the close vicinity of neurons did not initate astrocyte formation before schedule. All-trans retinoic acid, a well-known inducer of neuronal differentiation, on the other hand, blocked effectively the astroglia production if present in defined stages of the in vitro neuroectodermal cell differentiation. According to the data, retinoic acid plays at least a dual role in astrogliogenesis: while it is needed for committing neural progenitors for a future production of astrocytes, it prevents premature astrogliogenesis by inhibiting the differentiation of primed glial progenitors.  相似文献
8.
Hypoxia ischemia (HI) is a common cause of damage in the fetal and neonatal brain. Lifelong disabilities such as cerebral palsy, epilepsy, behavioral and learning disorders are some of the consequences of brain injury acquired in the perinatal periods. Inflammation and formation of free radicals appear to play key roles in neonatal HI. The aim of this study was to describe the chronological sequence of adenosine deaminase (ADA) activity, the oxidative damage changes and astrocyte response using the classic model of neonatal HI. We observed an increase in the activity of ADA and lipid peroxidation in the cerebral cortex 8 days after neonatal HI. This was accompanied by a GFAP-positive, and the degree of brain damage was determined histochemically by hematoxylin–eosin (HE). Taking into account the important anti-inflammatory role of adenosine, ADA may provide an efficient means for scavenging cell-surrounding adenosine and play an important part in subsequent events of neonatal HI in association with GFAP reactive gliosis. The present investigation showed that neonatal HI causes the increase of free radicals and significant damage in the cerebral cortex. The increase in ADA activity may reflect the activation of the immune system caused by HI because the morphological analysis exhibited a lymphocytic infiltration.  相似文献
9.
Glutaminyl cyclase (QC) converts N-terminal glutaminyl residues into pyroglutamate (pE), thereby stabilizing these peptides/proteins. Recently, we demonstrated that QC also plays a pathogenic role in Alzheimer's disease by generating the disease-associated pE-Abeta from N-terminally truncated Abeta peptides in vivo. This newly identified function makes QC an interesting pharmacological target for Alzheimer's disease therapy. However, the expression of QC in brain and peripheral organs, its cell type-specific and subcellular localization as well as developmental profiles in brain are not known. The present study was performed to address these issues in mice. In brain, QC mRNA expression was highest in hypothalamus, followed by hippocampus and cortex. In liver, QC mRNA concentration was almost as high as in brain while lower QC mRNA levels were detected in lung and heart and very low expression levels were found in kidney and spleen. In the developmental course, stable QC mRNA levels were detected in hypothalamus from postnatal day 5 to 370. On the contrary, in cortex and hippocampus QC mRNA levels were highest after birth and declined during ontogenesis by 20–25%. These results were corroborated by immunocytochemical analysis in mouse brain demonstrating a robust QC expression in a subpopulation of lateral and paraventricular hypothalamic neurons and the labeling of a significant number of small neurons in the hippocampal molecular layer, in the hilus of the dentate gyrus and in all layers of the neocortex. Hippocampal QC-immunoreactive neurons include subsets of parvalbumin-, calbindin-, calretinin-, cholecystokinin- and somatostatin-positive GABAergic interneurons. The density of QC labeled hippocampal neurons declined during postnatal development matching the decrease in QC mRNA expression levels. Subcellular double immunofluorescent analysis localized QC within the endoplasmatic reticulum, Golgi apparatus and secretory granules, consistent with a function of QC in protein maturation and/or modification. Our results are in compliance with a role of QC in hypothalamic hormone maturation and suggest additional, yet unidentified QC functions in brain regions relevant for learning and memory which are affected in Alzheimer's disease.  相似文献
10.
Mesenchymal stem cells derived from bone marrow and adipose tissue are being considered for use in neural repair because they can differentiate after appropriate induction in culture into neurons and glia. The question we asked was if neurospheres could be harvested from adipose-derived stem cells and if they then could differentiate in culture to peripheral glial-like cells. Here, we demonstrate that adipose-derived mesenchymal stem cells can form nestin-positive non-adherent neurosphere cellular aggregates when cultured with basic fibroblast growth factor and epidermal growth factor. Dissociation of these neurospheres and removal of mitogens results in expression of the characteristic Schwann cell markers S100 and p75 nerve growth factor receptor and GFAP. The simultaneous expression of these glia markers are characteristic features of Schwann cells and olfactory ensheathing cells which have unique properties regarding remyelination and enhancement of axonal regeneration. When co-cultured with dorsal root ganglion neurons, the peripheral glial-like cells derived from adipose mesenchymal stem cells aligned with neuritis and stimulated neuritic outgrowth. These results indicate that neurospheres can be generated from adipose-derived mesenchymal stem cells, and upon mitogen withdrawal can differentiate into peripheral glial cells with neurotrophic effects.  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号