首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   193篇
  免费   23篇
儿科学   1篇
基础医学   19篇
临床医学   3篇
内科学   2篇
神经病学   1篇
特种医学   188篇
外科学   1篇
肿瘤学   1篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   4篇
  2018年   3篇
  2017年   6篇
  2016年   9篇
  2015年   5篇
  2014年   10篇
  2013年   8篇
  2012年   9篇
  2011年   8篇
  2010年   16篇
  2009年   14篇
  2008年   16篇
  2007年   22篇
  2006年   23篇
  2005年   22篇
  2004年   12篇
  2003年   10篇
  2002年   8篇
  2001年   6篇
排序方式: 共有216条查询结果,搜索用时 312 毫秒
1.
Limited spatial resolution is a key obstacle to the study of brain white matter structure with diffusion tensor imaging (DTI). In its frequent implementation with single-excitation spin-echo echo-planar sequences, DTI's ability to resolve small structures is strongly restricted by T2 and T2* decay, B0 inhomogeneity, and limited signal-to-noise ratio (SNR). In this work the influence of sensitivity encoding (SENSE) on diffusion-weighted (DW) image properties is investigated. Computer simulations showed that the PSF becomes narrower with increasing SENSE reduction factors, R, enhancing the intrinsic resolution. After a brief theoretical discussion, we describe the estimation of SNR on a pixel-by-pixel basis as a function of R. The mean image SNR behavior is manifold: SENSE is capable of increasing SNR efficiency by reducing the echo time (TE). Each SNR(R) curve reveals a maximum that depends on the amount of partial Fourier encoding used. The overall best SNR efficiency for an eight-element head coil array and a b-factor of 1000 s/mm2 is achieved at R = 2.1 and partial Fourier encoding of 60%. In vivo tensor maps of volunteers and a patient, with an in-plane resolution of 0.78 x 0.78 mm2, are also presented to demonstrate the practical implementation of the parallel approach.  相似文献   
2.
The purpose of this article is to elucidate inherent limitations to the performance of parallel MRI. The study focuses on the ultimate signal-to-noise ratio (SNR), which refers to the maximum SNR permitted by the electrodynamics of the signal detection process. Using a spherical model object, it is shown that the behavior of the ultimate SNR imposes distinct limits on the acceleration rate in parallel imaging. For low and moderate acceleration, the ultimate SNR performance is nearly optimal, with geometry factors close to 1. However, for high reduction factors beyond a critical value, the ultimate performance deteriorates rapidly, corresponding to exponential growth of the geometry factor. The transition from optimal to deteriorating performance depends on the electrodynamic characteristics of the detected RF fields. In the near-field regime, i.e., for low B0 and small object size, the critical reduction factor is constant and approximately equal to four for 1D acceleration in the sphere. In the far-field wave regime the critical reduction factor is larger and increases both with B0 and object size. Therefore, it is concluded that parallel techniques hold particular promise for human MR imaging at very high field.  相似文献   
3.
Parallel image reconstruction using B-spline approximation (PROBER).   总被引:1,自引:0,他引:1  
A new reconstruction method for parallel MRI called PROBER is proposed. The method PROBER works in an image domain similar to methods based on Sensitivity Encoding (SENSE). However, unlike SENSE, which first estimates the spatial sensitivity maps, PROBER approximates the reconstruction coefficients directly by B-splines. Also, B-spline coefficients are estimated at once in order to minimize the reconstruction error instead of estimating the reconstruction in each pixel independently (as in SENSE). This makes the method robust to noise in reference images. No presmoothing of reference images is necessary. The number of estimated parameters is reduced, which speeds up the estimation process. PROBER was tested on simulated, phantom, and in vivo data. The results are compared with commercial implementations of the algorithms SENSE and GRAPPA (Generalized Autocalibrating Partially Parallel Acquisitions) in terms of elapsed time and reconstruction quality. The experiments showed that PROBER is faster than GRAPPA and SENSE for images wider than 150x150 pixels for comparable reconstruction quality. With more basis functions, PROBER outperforms both SENSE and GRAPPA in reconstruction quality at the cost of slightly increased computational time.  相似文献   
4.
Arrays with large numbers of independent coil elements are becoming increasingly available as they provide increased signal-to-noise ratios (SNRs) and improved parallel imaging performance. Processing of data from a large set of independent receive channels is, however, associated with an increased memory and computational load in reconstruction. This work addresses this problem by introducing coil array compression. The method allows one to reduce the number of datasets from independent channels by combining all or partial sets in the time domain prior to image reconstruction. It is demonstrated that array compression can be very effective depending on the size of the region of interest (ROI). Based on 2D in vivo data obtained with a 32-element phased-array coil in the heart, it is shown that the number of channels can be compressed to as few as four with only 0.3% SNR loss in an ROI encompassing the heart. With twofold parallel imaging, only a 2% loss in SNR occurred using the same compression factor.  相似文献   
5.
Eight-channel transmit/receive body MRI coil at 3T.   总被引:1,自引:0,他引:1  
Multichannel transmit magnetic resonance imaging (MR) systems have the potential to compensate for signal-intensity variations occurring at higher field strengths due to wave propagation effects in tissue. Methods such as RF shimming and local excitation in combination with parallel transmission can be applied to compensate for these effects. Moreover, parallel transmission can be applied to ease the excitation of arbitrarily shaped magnetization patterns. The implementation of these methods adds new requirements in terms of MRI hardware. This article describes the design of a decoupled eight-element transmit/receive body coil for 3T. The setup of the coil is explained, starting with standard single-channel resonators. Special focus is placed on the decoupling of the elements to obtain independent RF resonators. After a brief discussion of the underlying theory, the properties and limitations of the coil are outlined. Finally, the functionality and capabilities of the coil are demonstrated using RF measurements as well as MRI sequences.  相似文献   
6.
Magnetic resonance spectroscopic imaging (MRSI) provides spatially resolved metabolite information that is invaluable for both neuroscience studies and clinical applications. However, lengthy data acquisition times, which are a result of time-consuming phase encoding, represent a major challenge for MRSI. Fast MRSI pulse sequences that use echo-planar readout gradients, such as proton echo-planar spectroscopic imaging (PEPSI), are capable of fast spectral-spatial encoding and thus enable acceleration of image acquisition times. Combining PEPSI with recent advances in parallel MRI utilizing RF coil arrays can further accelerate MRSI data acquisition. Here we investigate the feasibility of ultrafast spectroscopic imaging at high field (3T and 4T) by combining PEPSI with sensitivity-encoded (SENSE) MRI using eight-channel head coil arrays. We show that the acquisition of single-average SENSE-PEPSI data at a short TE (15 ms) can be accelerated to 32 s or less, depending on the field strength, to obtain metabolic images of choline (Cho), creatine (Cre), N-acetyl-aspartate (NAA), and J-coupled metabolites (e.g., glutamate (Glu) and inositol (Ino)) with acceptable spectral quality and localization. The experimentally measured reductions in signal-to-noise ratio (SNR) and Cramer-Rao lower bounds (CRLBs) of metabolite resonances were well explained by both the g-factor and reduced measurement times. Thus, this technology is a promising means of reducing the scan times of 3D acquisitions and time-resolved 2D measurements.  相似文献   
7.
MRI with non-Cartesian sampling schemes can offer inherent advantages. Radial acquisitions are known to be very robust, even in the case of vast undersampling. This is also true for 1D non-Cartesian MRI, in which the center of k-space is oversampled or at least sampled at the Nyquist rate. There are two main reasons for the more relaxed foldover artifact behavior: First, due to the oversampling of the center, high-energy foldover artifacts originating from the center of k-space are avoided. Second, due to the non-equidistant sampling of k-space, the corresponding field of view (FOV) is no longer well defined. As a result, foldover artifacts are blurred over a broad range and appear less severe. The more relaxed foldover artifact behavior and the densely sampled central k-space make trajectories of this type an ideal complement to autocalibrated parallel MRI (pMRI) techniques, such as generalized autocalibrating partially parallel acquisitions (GRAPPA). Although pMRI can benefit from non-Cartesian trajectories, this combination has not yet entered routine clinical use. One of the main reasons for this is the need for long reconstruction times due to the complex calculations necessary for non-Cartesian pMRI. In this work it is shown that one can significantly reduce the complexity of the calculations by exploiting a few specific properties of k-space-based pMRI.  相似文献   
8.
9.
10.
At sufficiently high Larmor frequencies, traveling electromagnetic waves along a magnet bore can be used for remote magnetic resonance excitation and detection, effectively using the bore as a waveguide. So far, this approach has relied only on the lowest waveguide modes and thus has not supported multiple‐channel operation for radiofrequency shimming and parallel imaging. In this work, this limitation is addressed by establishing a larger number of propagating modes and tapping their spatial field diversity with multiple waveguide ports. The number of available modes is increased by loading with dielectric inserts; the ports are implemented by stub and loop couplers at the end of a waveguide extension. The resulting traveling‐wave array, operated at 298 MHz in a 7T whole‐body magnet, is shown to enable radiofrequency shimming as well as parallel imaging with commonly used acceleration factors. The last part of the study concerns the amount of dielectric loading that is required. For the given Larmor frequency and bore dimensions, it is found that rather few water‐filled inserts, occupying ~5% of the bore cross‐section, are sufficient for effective parallel imaging. Magn Reson Med, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号