首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8055篇
  免费   400篇
  国内免费   32篇
耳鼻咽喉   49篇
儿科学   119篇
妇产科学   110篇
基础医学   956篇
口腔科学   159篇
临床医学   536篇
内科学   1974篇
皮肤病学   133篇
神经病学   378篇
特种医学   376篇
外科学   1888篇
综合类   50篇
预防医学   298篇
眼科学   105篇
药学   428篇
中国医学   15篇
肿瘤学   913篇
  2023年   43篇
  2021年   117篇
  2020年   72篇
  2019年   94篇
  2018年   117篇
  2017年   124篇
  2016年   124篇
  2015年   147篇
  2014年   175篇
  2013年   179篇
  2012年   310篇
  2011年   354篇
  2010年   217篇
  2009年   167篇
  2008年   343篇
  2007年   394篇
  2006年   364篇
  2005年   375篇
  2004年   375篇
  2003年   351篇
  2002年   339篇
  2001年   343篇
  2000年   348篇
  1999年   316篇
  1998年   114篇
  1997年   83篇
  1996年   80篇
  1995年   68篇
  1994年   42篇
  1993年   71篇
  1992年   207篇
  1991年   171篇
  1990年   169篇
  1989年   165篇
  1988年   145篇
  1987年   154篇
  1986年   139篇
  1985年   149篇
  1984年   101篇
  1983年   88篇
  1982年   42篇
  1979年   75篇
  1978年   55篇
  1977年   43篇
  1974年   45篇
  1973年   47篇
  1971年   48篇
  1969年   41篇
  1968年   44篇
  1967年   41篇
排序方式: 共有8487条查询结果,搜索用时 22 毫秒
1.
The WJOG8815L phase II clinical study involves patients with non‐small cell lung cancer (NSCLC) that harbored the EGFR T790M mutation, which confers resistance to EGFR tyrosine kinase inhibitors (TKIs). The purpose of this study was to assess the predictive value of monitoring EGFR genomic alterations in circulating tumor DNA (ctDNA) from patients with NSCLC that undergo treatment with the third‐generation EGFR‐TKI osimertinib. Plasma samples of 52 patients harboring the EGFR T790M mutation were obtained pretreatment (Pre), on day 1 of treatment cycle 4 (C4) or cycle 9 (C9), and at diagnosis of disease progression or treatment discontinuation (PD/stop). CtDNA was screened for EGFR‐TKI‐sensitizing mutations, the EGFR T790M mutation, and other genomic alterations using the cobas EGFR Mutation Test v2 (cobas), droplet digital PCR (ddPCR), and targeted deep sequencing. Analysis of the sensitizing—and T790M—EGFR mutant fractions (MFs) was used to determine tumor mutational burden. Both MFs were found to decrease during treatment, whereas rebound of the sensitizing EGFR MF was observed at PD/stop, suggesting that osimertinib targeted both T790M mutation‐positive tumors and tumors with sensitizing EGFR mutations. Significant differences in the response rates and progression‐free survival were observed between the sensitizing EGFR MF‐high and sensitizing EGFR MF‐low groups (cutoff: median) at C4. In conclusion, ctDNA monitoring for sensitizing EGFR mutations at C4 is suitable for predicting the treatment outcomes in NSCLC patients receiving osimertinib (Clinical Trial Registration No.: UMIN000022076).

Abbreviations

CIs
confidence intervals
ctDNA
circulating tumor DNA
ddPCR
droplet digital PCR
EGFR
epidermal growth factor receptor
MFs
mutant fractions
NGS
next‐generation sequencing
NSCLC
non‐small cell lung cancer
ORR
overall response rate
OS
overall survival
PD
progressive disease
PFS
progression‐free survival
PR
partial response
SD
stable disease
TKI
tyrosine kinase inhibitor
  相似文献   
2.
3.
4.
5.
6.
7.
Ectopic cervical thymoma (ECT) is a rare tumor. We present a case of 56-year-old woman with an ECT in the anterior neck that was correctly diagnosed preoperatively. The patient had no symptoms of myasthenia gravis or other immune disorders, and the tumor was not invading any adjacent structures. We performed tumor resection and thymectomy through a transcervical approach using video-assisted thoracoscopic surgery with a multi-access single port. To our knowledge, this is a novel combined technique for the resection of an ECT.  相似文献   
8.
ATP is the major excitatory transmitter from chemoreceptor type I cells to sensory nerve endings in the carotid body, and has been suggested to be released by exocytosis from these cells. We investigated the mRNA expression and immunohistochemical localization of vesicular nucleotide transporter (VNUT) in the rat carotid body. RT-PCR detected mRNA expression of VNUT in extracts of the tissue. Immunoreactivity for VNUT was localized in a part of type I cells immunoreactive for synaptophysin (SYN), but not in glial-like type II cells immunoreactive for S100 and S100B. Among SYN-immunoreactive type I cells, VNUT immunoreactivity was selectively localized in the sub-population of tyrosine hydroxylase (TH)-immunorective type I cells associated with nerve endings immunoreactive for the P2X3 purinoceptor; however, it was not detected in the sub-population of type I cells immunoreactive for dopamine beta-hydroxylase. Multi-immunolabeling for VNUT, P2X3, and Bassoon revealed that Bassoon-immunoreactive products were localized in type I cells with VNUT immunoreactivity, and accumulated on the contact side of P2X3-immunoreactive nerve endings. These results revealed the selective localization of VNUT in the subpopulation of TH-immunoreactive type I cells attached to sensory nerve endings and suggested that these cells release ATP by exocytosis for chemosensory transmission in the carotid body.  相似文献   
9.
10.
BACKGROUND AND PURPOSE:Synthetic MR imaging creates multiple contrast-weighted images based on a single time-efficient quantitative scan, which has been mostly performed for 2D acquisition. We assessed the utility of 3D synthetic MR imaging in patients with MS by comparing its diagnostic image quality and lesion volumetry with conventional MR imaging.MATERIALS AND METHODS:Twenty-four patients with MS prospectively underwent 3D quantitative synthetic MR imaging and conventional T1-weighted, T2-weighted, FLAIR, and double inversion recovery imaging, with acquisition times of 9 minutes 3 seconds and 18 minutes 27 seconds for the synthetic MR imaging and conventional MR imaging sequences, respectively. Synthetic phase-sensitive inversion recovery images and those corresponding to conventional MR imaging contrasts were created for synthetic MR imaging. Two neuroradiologists independently assessed the image quality on a 5-point Likert scale. The numbers of cortical lesions and lesion volumes were quantified using both synthetic and conventional image sets.RESULTS:The overall diagnostic image quality of synthetic T1WI and double inversion recovery images was noninferior to that of conventional images (P = .23 and .20, respectively), whereas that of synthetic T2WI and FLAIR was inferior to that of conventional images (both Ps<.001). There were no significant differences in the number of cortical lesions (P = .17 and .53 for each rater) or segmented lesion volumes (P = .61) between the synthetic and conventional image sets.CONCLUSIONS:Three-dimensional synthetic MR imaging could serve as an alternative to conventional MR imaging in evaluating MS with a reduced scan time.

MS is a chronic, immune-mediated, demyelinating disorder of the CNS that usually affects young adults and leads to chronic disability.1,2 The diagnostic criteria for MS are based on the lesion number, size, and location.3 Although diffuse periventricular lesions are most commonly observed, previous studies have shown that the cortical and juxtacortical lesion load is associated with cognitive impairment.4,5 Additionally, the detection of cortical and juxtacortical lesions may contribute to early diagnosis because these lesions are characteristic of MS. MR imaging plays an integral role in the diagnosis and management of patients with MS through the in vivo detection and characterization of lesions. Although MR imaging is highly sensitive in detecting periventricular lesions and is considered as a standard biomarker in the monitoring of treatment response,6 conventional MR imaging techniques have a relatively low sensitivity for detecting (juxta)cortical lesions. Phase-sensitive inversion recovery (PSIR) and double inversion recovery (DIR) are recently developed imaging techniques useful for detecting MS lesions, especially (juxta)cortical ones.7,8 The PSIR preserves the positive and negative polarities of tissues as they recover from the inversion pulse, thus providing a T1-weighted contrast with higher SNR and GM-WM contrast. DIR is an imaging technique that suppresses both WM and CSF signals, thus significantly increasing lesion conspicuity in both GM and WM compared with FLAIR or T2-weighted images. PSIR and DIR have been shown to improve sensitivity compared with FLAIR or T2-weighted images in the detection of cortical lesions. However, the additional scanning time associated with PSIR and DIR has hindered the use of these techniques in clinical practice. Thus, a rapid imaging technique that can acquire these contrast-weighted images with high spatial resolution is desired.Quantitative synthetic MR imaging is a time-efficient MR imaging technique that enables simultaneous quantification of T1 and T2 relaxation times and proton attenuation and allows the creation of any contrast-weighted image, including DIR and PSIR, without additional scanning time.913 Previous studies have shown that synthetic MR imaging is useful for detecting and characterizing MS lesions.10,11,14 However, these studies were based on a multisection 2D acquisition, providing a relatively low resolution in the section direction. 3D quantitative synthetic MR imaging, enabling the simultaneous quantification of T1, T2, and proton attenuation of the whole brain in 3D,1517 with smaller section thickness, should allow for more detailed delineation of MS lesions. With the combination of high spatial resolution 3D acquisition and DIR as well as PSIR contrasts, 3D quantitative synthetic MR imaging could serve as a clinically useful technique for monitoring MS lesions.Here, we assessed the utility of the recently developed 3D quantitative synthetic MR imaging for evaluating MS lesions by comparing the synthetic and conventional MR image sets. We hypothesized that 3D synthetic MR imaging would have a comparable diagnostic quality with that of a conventional image set (including 3D FLAIR and DIR) while shortening the total acquisition time.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号