首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34篇
  免费   0篇
儿科学   1篇
基础医学   3篇
临床医学   4篇
内科学   2篇
神经病学   13篇
外科学   6篇
预防医学   4篇
药学   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2015年   2篇
  2014年   3篇
  2013年   1篇
  2012年   2篇
  2011年   3篇
  2010年   1篇
  2008年   4篇
  2007年   2篇
  2006年   2篇
  2005年   1篇
  2003年   2篇
  2002年   1篇
  1990年   1篇
  1985年   1篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1975年   1篇
排序方式: 共有34条查询结果,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
The human body louse is known as a vector for the transmission of three serious diseases—specifically, epidemic typhus, trench fever, and relapsing fever caused by Rickettsia prowazekii, Bartonella quintana, and Borrelia recurrentis, respectively—that have killed millions of people. It is also suspected in the transmission of a fourth pathogen, Yersinia pestis, which is the etiologic agent of plague. To date, human lice belonging to the genus Pediculus have been classified into three mitochondrial clades: A, B, and C. Here, we describe a fourth mitochondrial clade, Clade D, comprising head and body lice. Clade D may be a vector of B. quintana and Y. pestis, which is prevalent in a highly plague-endemic area near the Rethy Health District, Orientale Province, Democratic Republic of the Congo.Head lice (Pediculus humanus capitis) and body lice (Pediculus humanus humanus) are bloodsucking ectoparasites specific to humans, which occupy two different ecological niches.1 Head lice live and multiply in the hair, whereas body lice live and multiply in the clothes.2 Until recently, it was not easy to distinguish between the two ecotypes. In 2013, a powerful tool was introduced based on the use of multiplex real-time polymerase chain reaction (PCR) to quickly differentiate between head lice and body lice.3 The pediculosis caused by head lice affects hundreds of millions of children worldwide, regardless of their hygienic condition, and can cause itching and insomnia.4 On the contrary, body lice infestation is prevalent in high-risk populations, such as homeless individuals and war refugees, who lack access to standard sanitary conditions and a change of clothing.5,6 Body lice represents a real threat to humans because of their role as a vector for the transmission of three serious diseases—specifically, epidemic typhus, trench fever, and relapsing fever caused by Rickettsia prowazekii, Bartonella quintana, and Borrelia recurrentis, respectively—that have killed millions of people.7 The body louse is also suspected in the transmission of a fourth pathogen, Yersinia pestis, which is the etiologic agent of plague.810 Molecular analysis of mitochondrial genes has allowed the classification of human lice into three divergent clades: A, B, and C; only Clade A includes both head and body lice.11 Clade A is distributed worldwide, Clade B appears to have an American origin,12 and Clade C is believed to be restricted to Africa and southeast Asia.13,14 Until now, only body lice have been associated with R. prowazekii, whereas the DNA of B. quintana was previously detected in head lice belonging to Clade A and Clade C.15 Here, we report that head and body lice infected by B. quintana and Y. pestis belong to a new clade (Clade D) that is prevalent in the Democratic Republic of the Congo.In April 2010, body and head lice were collected from 37 mono-infested individuals (seven had head lice and 30 had body lice) living in six different localities in a highly plague-endemic area near the Rethy Health District, Orientale Province, Democratic Republic of the Congo (10

Table 1

Distribution of Bartonella quintana and Yersinia pestis DNA in body and head lice collected from patients from the Rethy Health District, Democratic Republic of the Congo, April 2010
PatientsNumber of liceCollected fromNumber of lice infected byLocality
B. quintanaY. pestis
Patient 11Head00Ikamea
Patient 27Head50Kanga
Patient 32Head00
Patient 45Body00
Patient 52Body00
Patient 64Body00
Patient 72Body00Kokpa
Patient 84Body00
Patient 91Body00
Patient 107Body00
Patient 112Body00
Patient 121Body00
Patient 132Body00
Patient 143Body00
Patient 151Body00
Patient 164Body00
Patient 175Body00
Patient 183Body00
Patient 192Body00
Patient 202Body00
Patient 212Body00
Patient 225Body00
Patient 234Body00
Patient 243Body00
Patient 2512Head11
Patient 263Body00
Patient 2719Body00
Patient 289Body81
Patient 291Body00
Patient 301Head00Rem
Patient 311Body11
Patient 322Body20Rethy
Patient 3332Body320
Patient 346Body30
Patient 353Head00
Patient 366Body20Undokulo
Patient 375Head00
Total37174543
Open in a separate windowTesting of individual lice indicated that lice from eight of the 37 patients living in five of the six visited localities were found to be infested with B. quintana, Y. pestis, or, in some instances, both of these pathogens (Supplemental Table 1). Finally, one of the nine body lice collected from patient 28 and the unique body louse recovered from patient 31 contained the DNA of both pathogens at the same time (Supplemental Table 1).In total, 33.5% (48/143) of the body lice and 19% (6/31) of the head lice contained B. quintana DNA, while the Y. pestis pla gene was detected in one head louse that was negative for other pathogens and in two body lice that were PCR positive for B. quintana (Supplemental Table 1).10In this work, we sought to determine 1) which mitochondrial clade the lice infected by B. quintana and Y. pestis belonged to and 2) the genotypic status (head or body) of these lice.To identify the mitochondrial clades of the lice included in this work, we amplified and sequenced a 347-bp fragment of the cytochrome b (cytb) gene as previously described.3 Negative controls were included in each assay. The nucleotide sequences obtained in this study (GenBank: KJ850916-KJ850932) were aligned with those chosen by Light and others to determine the taxonomic status of human head and body lice13 using CLUSTALX 2.0.11.16 MEGA 6 was used for the phylogenetic analyses.17 Maximum-likelihood analyses were performed under the Kimura 2-parameter model with 1,000 replicates.17To determine the genotypic status of the lice (head or body louse) that tested positive for B. quintana and Y. pestis, DNA samples were analyzed by multiplex real-time PCR using two hydrolysis probes that targeted the PHUM540560 gene, as previously described.3 As positive controls, we used head and body lice with known genotypes.The ML phylogenetic analysis performed for the cytb gene demonstrated that the sequences were divided among four well-supported clades, corresponding to the known clades: A, B, and C, in addition to a new clade characterized for the first time here and referred to as Clade D (Figure 1A ). Interestingly, Clade D is known only in the Republic Democratic of the Congo and Ethiopia2,13 and contains both head and body lice, similar to Clade A (Figure 1A). The 174 lice cytb sequences analyzed in this work form nine distinct haplotypes: one for Clade A, which contains body and head lice (Figure 1A), and eight for haplogroup D (Figure 1A). Haplotype KJ850919 (Clade D) consists of body lice (Figure 1A) and is the most prevalent haplotype, 56% (98/174) (Supplemental Table 1).Open in a separate windowFigure 1.Maximum-likelihood (ML) phylogram of the mitochondrial cytochrome b (cytb) gene. (A) ML bootstrap with values greater than 75 located above the nodes. The mitochondrial clade memberships are indicated to the right of each tree. Lice samples positive for Bartonella quintana and/or Yersinia pestis and their genotypes (head or body lice) are specified (see legend at the top left). Specimens analyzed in this study are highlighted in black. The GenBank accession number, lead author, and locality are indicated for each louse specimen. Localities are abbreviated as follows: California (CA), Democratic Republic of the Congo (RDC), Florida (FL), Georgia (GA), Maryland (MD), Massachusetts (MA), Papua New Guinea (PNG), United Kingdom (UK), and Utah (UT). (B) Pathogenic bacteria transmitted by human lice. For head lice, only the DNA of some of these bacteria was detected.Among the 37 patients, 14 were simultaneously infested with lice belonging to clades A and D. Of these, four patients (nos. 2, 25, 28, and 33) harbored lice containing the DNA of pathogenic bacteria.The other lice infected with pathogens were distributed as follows: those belonging to Clade A were found in patients 31, 32, and 34 and those belonging to Clade D were recovered from patient 36 (Supplemental Table 1).Interestingly, the two head lice found on patient 25, each infected with a different pathogen, did not belong to the same mitochondrial clade. Indeed, the first one infected with Y. pestis belonged to the Clade A while the second one infected with B. quintana belonged to Clade D (Supplemental Table 1).Four patients were only infested with lice from Clade A and 19 were only infested with lice from Clade D. Of these 19 patients, two haplotypes were found to coexist in three patients, while the KJ850919 haplotype was the only haplotype found in 15 patients.The multiplex RT-PCR targeting the PHUM540560 gene allowed us to confirm that the genotypic statuses of the lice tested were consistent with the ecological niches that they occupied. Indeed, the signal emitted by the probe specific to head lice was detected only in the lice specimens collected from the heads of the patients, whereas the signal emitted by the probe specific to body lice was detected only in the lice recovered from patients'' clothes. The negative controls remained negative in all PCR-based experiments.The diversity of lice belonging to the genus Pediculus that infest humans is well established. Phylogenetic analysis of head and body lice from a remote region of Central Africa, in an eastern province of the Democratic Republic of the Congo, revealed that 71% of lice belonged to a new mitochondrial clade, which is described here for the first time. Indeed, this new clade (Clade D) comprises head and body lice, similar to Clade A, which is the most prevalent and widely distributed clade worldwide (Figure 1). However, in 2008, Light and others13 described the head louse (AY316774 Kittler Ethiopia) (Figure 1) that we classify here in Clade D as belonging to an unconnected subnetwork due to its respective positions in the phylogenetic tree and in drawn networks. As in Clade A, the DNA of two highly dangerous pathogens for humans, B. quintana and Y. pestis, were detected in body lice as well as in head lice from Clade D.This study also suggests that the included mono-infested patients (head or body) could be subject to cross-infestation by lice belonging to clades A and D. This leads us to believe that the exchange of pathogens can occur between lice belonging to different haplotypes that compose clades A and D.In conclusion, this work has allowed us to highlight the existence of a fourth mitochondrial clade in P. humanus. This clade comprises head and body lice that could be vectors for pathogens dangerous to humans. This possibility should be further examined.  相似文献   
7.
A 42-year-old woman developed right arm and right leg weakness when turning her head to the left. A carotid angiogram, in the neutral position, demonstrated anterior deviation of the left internal carotid artery and complete occlusion of the left internal carotid artery when the head was rotated to the left. During surgery, our patient had redundant left internal carotid artery and was treated by resection and reanastomosis of the internal carotid artery. The patient's Doppler 4 months postoperatively showed widely patent arteries, and she has subsequently been asymptomatic.  相似文献   
8.
Metoclopramide is a dopamine receptor antagonist that is used to treat diabetic gastroparesis, chemotherapy-induced nausea, and migraines. It is known to cause extrapyramidal side effects such as tardive dyskinesia, parkinsonism, dystonia, and akithisia, but not chorea. We describe a patient who presented with choreiform movements shortly after the administration of intravenous metoclopramide. Her work-up for secondary causes of chorea was otherwise negative and her symptoms abated with the administration of oral quetiapine and intravenous diazepam.  相似文献   
9.
10.
The effects of transection of fiber connections with the medial basal hypothalamus (MBH) on induction or maintenance of pseudopregnancy (PSP) were studied. PSP was induced ‘pharmacologically’ by injecting reserpine (1 mg/kg) on the day of diestrus I in 4-day cycling rats or the corresponding day after induction of ovulation in persistent estrous animals. Postero-bilateral deafferentation (PBLD) which cuts dorsal, lateral and posterior connections to the MBH failed to influence the induction of PSP. All rats resulted in PSP following reserpine injection. Anterior deafferentation (AD) which interrupts the preoptic-hypothalamic connections induced anovulatory persistent vaginal estrus. In these AD rats, reserpine could not activate new corpora lutea which had been formed by a pretreatment with 10 I.U. HCG. However, replacement therapy with 20 I.U. prolactin was successful in activating these corpora lutea. In spite of the AD, all rats thereafter remained in diestrus, massive deciduomata being formed following uterine trauma. In the second series of experiments, the AD or roof deafferentation (RD) was performed 3 days after reserpine injection. The AD effectively interrupted reserpine-induced PSP. However, this effect of the AD was reversed by the replacement with prolactin from the day of operation. PSP was also not interrupted by the AD when reserpine was given supplementarily from the day of the AD through the day before autopsy, but a single dose of reserpine only on the day of the AD was not effective in maintaining PSP in AD rats. The RD which removes dorsal afferents to the preoptic area (POA) and hypothalamus did not interfere with PSP; it continued in all rats of the group. These results suggest that neural influence originating from the POA or more rostral regions is necessary to maintain prolonged release of prolactin during PSP. Since successive injections of reserpine were needed to keep the AD rats pseudopregnant, reserpine sensitive neural structures which may locate behind the surgical cut seem to be unable to support independently prolonged release of prolactin during PSP.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号