首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6661篇
  免费   581篇
  国内免费   78篇
耳鼻咽喉   90篇
儿科学   191篇
妇产科学   195篇
基础医学   811篇
口腔科学   72篇
临床医学   684篇
内科学   1437篇
皮肤病学   86篇
神经病学   703篇
特种医学   175篇
外科学   1022篇
综合类   176篇
一般理论   5篇
预防医学   716篇
眼科学   301篇
药学   463篇
中国医学   3篇
肿瘤学   190篇
  2023年   30篇
  2021年   89篇
  2020年   50篇
  2019年   108篇
  2018年   112篇
  2017年   99篇
  2016年   96篇
  2015年   99篇
  2014年   168篇
  2013年   296篇
  2012年   340篇
  2011年   425篇
  2010年   230篇
  2009年   233篇
  2008年   399篇
  2007年   422篇
  2006年   409篇
  2005年   450篇
  2004年   441篇
  2003年   383篇
  2002年   376篇
  2001年   90篇
  2000年   48篇
  1999年   64篇
  1998年   84篇
  1997年   68篇
  1996年   69篇
  1995年   54篇
  1994年   75篇
  1993年   58篇
  1992年   54篇
  1991年   71篇
  1990年   53篇
  1989年   43篇
  1988年   41篇
  1987年   35篇
  1986年   51篇
  1985年   54篇
  1984年   54篇
  1983年   57篇
  1982年   70篇
  1981年   55篇
  1980年   69篇
  1979年   38篇
  1978年   46篇
  1977年   27篇
  1976年   41篇
  1974年   35篇
  1973年   26篇
  1961年   21篇
排序方式: 共有7320条查询结果,搜索用时 15 毫秒
1.
Multiple approaches were employed to detect pathogens from bone margins associated with Diabetic Foot Osteomyelitis (DFO). Intra‐operative bone specimens of 14 consecutive subjects with suspected DFO were collected over a six‐month study period from Liverpool Hospital. Infected bone and a proximal bone margins presumed to be ‘clean/non‐infected’ were collected. Bone material was subjected to conventional culture, DNA sequencing and microscopy. In total, eight of 14 (57%) proximal bone margins had no growth by conventional culture but were identified in all proximal bone specimens by DNA sequencing. Proximal margins had lower median total microbial counts than infected specimens, but these differences were not statistically significant. Pathogens identified by sequencing in infected specimens were identified in proximal margins and the microbiomes were similar (ANOSIM = 0.02, p = 0.59). Using a combination of SEM and/or PNA‐FISH, we visualized the presence of microorganisms in infected bone specimens and their corresponding proximal margins of seven patients (50%) with DFO. We identify that bacteria can still reside in what seems to be proximal ‘clean’ margins. The significance and implications of clinical outcomes requires further analysis from a larger sample size that incorporates differences in surgical and post‐operative approaches, correlating any outcomes back to culture‐sequence findings.  相似文献   
2.
3.
4.
5.
6.
7.
The hippocampal system contains neural populations that encode an animal's position and velocity as it navigates through space. Here, we show that such populations can embed two codes within their spike trains: a firing rate code ( R ) conveyed by within‐cell spike intervals, and a co‐firing rate code () conveyed by between‐cell spike intervals. These two codes behave as conjugates of one another, obeying an analog of the uncertainty principle from physics: information conveyed in R comes at the expense of information in , and vice versa. An exception to this trade‐off occurs when spike trains encode a pair of conjugate variables, such as position and velocity, which do not compete for capacity across R and . To illustrate this, we describe two biologically inspired methods for decoding R and , referred to as sigma and sigma‐chi decoding, respectively. Simulations of head direction and grid cells show that if firing rates are tuned for position (but not velocity), then position is recovered by sigma decoding, whereas velocity is recovered by sigma‐chi decoding. Conversely, simulations of oscillatory interference among theta‐modulated “speed cells” show that if co‐firing rates are tuned for position (but not velocity), then position is recovered by sigma‐chi decoding, whereas velocity is recovered by sigma decoding. Between these two extremes, information about both variables can be distributed across both channels, and partially recovered by both decoders. These results suggest that populations with different spatial and temporal tuning properties—such as speed versus grid cells—might not encode different information, but rather, distribute similar information about position and velocity in different ways across R and . Such conjugate coding of position and velocity may influence how hippocampal populations are interconnected to form functional circuits, and how biological neurons integrate their inputs to decode information from firing rates and spike correlations.  相似文献   
8.
In mouse models of acute motor axonal neuropathy, anti‐ganglioside antibodies (AGAbs) bind to motor axons, notably the distal nerve, and activate the complement cascade. While complement activation is well studied in this model, the role of inflammatory cells is unknown. Herein we aimed to investigate the contribution of phagocytic cells including macrophages, neutrophils and perisynaptic Schwann cells (pSCs) to distal nerve pathology. To observe this, we first created a subacute injury model of sufficient duration to allow inflammatory cell recruitment. Mice were injected intraperitoneally with an anti‐GD1b monoclonal antibody that binds strongly to mouse motor nerve axons. Subsequently, mice received normal human serum as a source of complement. Dosing was titrated to allow humane survival of mice over a period of 3 days, yet still induce the characteristic neurological impairment. Behaviour and pathology were assessed in vivo using whole‐body plethysmography and post‐sacrifice by immunofluorescence and flow cytometry. ex vivo nerve‐muscle preparations were used to investigate the acute phagocytic role of pSCs following distal nerve injury. Following complement activation at distal intramuscular nerve sites in the diaphragm macrophage localisation or numbers are not altered, nor do they shift to a pro‐ or anti‐inflammatory phenotype. Similarly, neutrophils are not significantly recruited. Instead, ex vivo nerve‐muscle preparations exposed to AGAb plus complement reveal that pSCs rapidly become phagocytic and engulf axonal debris. These data suggest that pSCs, rather than inflammatory cells, are the major cellular vehicle for axonal debris clearance following distal nerve injury, in contrast to larger nerve bundles where macrophage‐mediated clearance predominates.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号