首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   5篇
基础医学   4篇
口腔科学   4篇
内科学   4篇
神经病学   9篇
特种医学   1篇
外科学   7篇
眼科学   3篇
肿瘤学   2篇
  2022年   1篇
  2021年   2篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2014年   1篇
  2013年   2篇
  2012年   3篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   3篇
  2005年   1篇
  2003年   3篇
  2002年   1篇
  2000年   3篇
  1991年   2篇
  1989年   3篇
排序方式: 共有34条查询结果,搜索用时 31 毫秒
1.
Current pre-mortem diagnosis of neurodegenerative disorders such as Alzheimer's disease (AD) or amyotrophic lateral sclerosis (ALS) is based on clinical assessment of neurological deficits. However, symptoms and signs emerge only late in the disease course, thus indicating an urgent need for novel tools for detection of the underlying neuropathology. NST-729 (MW = 310) is a novel molecular imaging probe, which is a member of the ApoSense family of small molecule detectors of apoptosis. We now report on the ability of NST-729, upon its systemic administration in vivo, to detect characteristic neuropathology in pre-clinical models of AD (Tg2576 transgenic mice) and ALS (transgenic SOD-1 G93A mutation mice). In the AD model, NST-729 clearly and selectively bound and imaged amyloid plaques, in excellent correlation with a typical amyloid ex vivo staining (Congo red). In the ALS model, NST-729 distinctly and selectively imaged multiple degenerating neurons in the motor nuclei in the pons, medulla and spinal cord, manifesting numerous multifocal irregularities and disruptions of neuritic projections, typical of axonal apoptosis. Study results therefore support the potential utility of NST-729 as a cross-disease biomarker for neurodegeneration, and also its potential role as the first molecular probe for ALS. Future radio-labeled NST-729 analogues may assist in the early diagnosis of disease, and in the development of neuroprotective therapies for these severe neurological disorders.  相似文献   
2.
3.
Achievements in tissue engineering using mesenchymal stem cells (MSC) demand a clinically acceptable "off-the-shelf" cell therapy product. Efficacy of cryopreservation of human bone marrow-derived MSC in clinically safe, animal product-free medium containing 2%, 5%, and 10% dimethyl sulfoxide (DMSO) was evaluated by measuring cell recovery, viability, apoptosis, proliferation rate, expression of a broad panel of MSC markers, and osteogenic differentiation. Rate-controlled freezing in CryoStor media was performed in a programmable cell freezer. About 95% of frozen cells were recovered as live cells after freezing in CryoStor solutions with 5% and 10% DMSO followed by storage in liquid nitrogen for 1 month. Cell recovery after 5 months storage was 72% and 80% for 5% and 10% DMSO, respectively. Measurements of caspase 3 activity demonstrated that 15.5% and 12.8% of cells after 1 month and 18.3% and 12.9% of cells after 5 months storage in 5% and 10% DMSO, respectively, were apoptotic. Proliferation of MSC recovered after cryopreservation was measured during 2 weeks post-plating. Proliferation rate was not compromised and was even enhanced. Cryopreservation did not alter expression of MSC markers. Quantitative analysis of alkaline phosphatase (ALP) activity, ALP surface expression and Ca?? deposition in previously cryopreserved MSC and then differentiated for 3 weeks in osteogenic medium demonstrated the same degree of osteogenic differentiation as in unfrozen parallel cultures. Cell viability and functional parameters were analyzed in MSC after short-term storage at 4°C in HypoThermosol-FRS solution, also free of animal products. Hypothermic storage for 2 and 4 days resulted in about 100% and 85% cell recovery, respectively, less than 10% of apoptotic cells, and normal proliferation, marker expression, and osteogenic potential. Overall, our results demonstrate that human MSC could be successfully cryopreserved for banking and clinical applications and delivered to the bedside in clinically safe protective reagents.  相似文献   
4.
5.
Glaucoma is a term encompassing a variety of diseases that culminate in the death of retinal ganglion cells (RGC). Although a variety of factors can initiate the disease onset, increased intraocular pressure (IOP) is one of the major risk factors. In our previous study we found that semaphorins were causally involved in RGC death following axotomy. Since a common feature of all  相似文献   
6.
Background Glaucoma is a term encompassing a variety of diseases that end in the death of retinal ganglion cells (RGC). Although a variety of factors can initiate the disease onset, increased intraocular pressure (IOP) is one of the major risk factors. In our previous study we found that semaphorins were causally involved in RGC death following axotomy. Since a common feature of all retinal neuropathies is axonal damage, we hypothesized that semaphorins are involved in glaucoma-induced RGC death. The purpose of this study was to analyze the effect of increased IOP on RGC viability and to analyze semaphorin expression pattern in glaucomatous retinas.Methods Utilizing retrograde-labeled dye (4-Di-10-Asp) and hematoxylin-eosin staining, we investigated the effect of elevated levels of IOP on RGC viability. In addition, immunohistochemical analysis and western blotting were used to study the pattern of semaphorin expression in retinas of rabbits with genetically developed increased IOP and subsequently glaucoma.Results Using specific anti-semaphorin antibodies, the expression of a single protein with the size of a semaphorin protein, 110 kDa, was detected; its expression was up-regulated in glaucomatous rabbits compared with controls. Time-course analysis revealed that semaphorin expression peaked between 2 and 6 months of age and declined thereafter. Immunohistochemical analysis revealed that semaphorin expression was up-regulated specifically in the ganglion cell layer, which is a structure that is highly affected in glaucoma.Conclusion Deciphering the molecular mechanisms of glaucoma-induced death and its mediators is a crucial step towards designing new therapeutic strategies to treat this incurable disease.  相似文献   
7.
Traumatic brain injury (TBI) remains a frequent and major challenge in neurological and neurosurgical practice. Apoptosis may play a role in cerebral tissue damage induced by the traumatic insult, and thus its detection and inhibition may advance patient care. DDC (N,N'-didansyl-L-cystine) is a novel fluorescent probe for detection of apoptotic cells. We now report on the performance of DDC in experimental TBI. Closed head injury was induced in mice by weight-drop. DDC was administered intravenously in vivo. Two hours later, animals were sacrificed, and brain tissue was subjected to fluorescent microcopy, for assessment of DDC uptake, in correlation with histopathological assessment of apoptosis by TUNEL and caspase substrates, and also in correlation with the neurological deficits, as assessed by Neurological Severity Score (NSS). Selective uptake of DDC was observed at the primary site of injury, and also at remote sites. Uptake was at the cellular level, with accumulation of DDC in the cytoplasm. Cells manifesting DDC uptake were confirmed as apoptotic cells by detection of the characteristic apoptotic DNA fragmentation (positive TUNEL staining) and detection of activated caspases. The damaged region stained by DDC fluorescence correlated with the severity of neuronal deficits. Our study confirms the role of apoptosis in TBI, and proposes DDC as a useful tool for its selective targeting and detection in vivo. Such imaging of apoptosis, following future radiolabeling of DDC, may advance care for patients with head injury, by allowing real-time evaluation of the extent of tissue damage, assessment of novel therapeutic strategies, and optimization of treatment for the individual patient.  相似文献   
8.
9.
Induction of neuronal apoptosis by Semaphorin3A-derived peptide   总被引:1,自引:0,他引:1  
Collapsin-1/Semaphorin3A (Sema3A) belongs to the secreted type III semaphorins family of axon guidance molecules with chemorepulsive activity, and is suggested to play a major role in navigating axonal networks throughout development into their correct destinations. We have previously shown that semaphorins are mediators of neuronal apoptosis and can induce neuronal death in the absence of any other apoptotic trigger. We report here that exposure of neuronal cells to a small conserved peptide derived from Sema3A initiates an apoptotic death process. Administration of this peptide to cultured chick sympathetic and mouse cerebellar granule neurons caused a marked shrinkage of their axonal network and cell death, which was characterized as apoptotic, based on nuclear staining. Attenuation of neuronal cell death was obtained by treatment with antioxidants and by vascular endothelial growth factor. Survival of neurons exposed to this peptide increased by co-treatment with caspase inhibitors. Induction of apoptosis was specific to neuronal cells, similarly to that induced by the full-length Sema3A protein. Our findings therefore suggest active participation of this conserved Sema3A-derived peptide in semaphorin-induced neuronal death process.  相似文献   
10.
The ml-o locus in barley confers resistance to all known races of the fungus Erysiphe graminis f.sp. hordei. Since the molecular mechanisms underlying ml-o-mediated resistance are currently undefined, experiments have been initiated to isolate the gene by means of its map position. A collection of backcross lines containing ml-o alleles derived from six barley genotypes allowed us to identify a set of DNA markers very tightly linked to the resistance locus. These markers span an unexpectedly small segment of 8.6 centimorgans on chromosome 4 that includes the Ml-o locus. Two of the markers cosegregate with the resistance locus on the basis of 44 homozygous resistant plants identified within a segregating F2 population derived from an intravarietal cross. Colinearity of the resistance-linked markers was confirmed in an F2 mapping population derived from a wide cross between Hordeum vulgare subsp. vulgare and Hordeum vulgare subsp. spontaneum. The two markers cosegregating with the resistance locus in the former cross define in the latter cross an interval of 2.4 centimorgans within which Ml-o is most probably situated. The set of linked markers opens up the possibility of carrying out a bidirectional chromosomal walk or jump to the gene.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号