首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   242173篇
  免费   7464篇
  国内免费   512篇
耳鼻咽喉   3190篇
儿科学   8745篇
妇产科学   6916篇
基础医学   32556篇
口腔科学   7394篇
临床医学   19356篇
内科学   44850篇
皮肤病学   5455篇
神经病学   16360篇
特种医学   12454篇
外国民族医学   99篇
外科学   35357篇
综合类   1263篇
现状与发展   1篇
一般理论   66篇
预防医学   21125篇
眼科学   5041篇
药学   15953篇
  2篇
中国医学   184篇
肿瘤学   13782篇
  2019年   894篇
  2018年   4427篇
  2017年   4664篇
  2016年   4146篇
  2015年   5871篇
  2014年   5597篇
  2013年   5202篇
  2012年   12575篇
  2011年   7527篇
  2010年   3723篇
  2009年   5438篇
  2008年   4563篇
  2007年   5397篇
  2006年   5607篇
  2005年   13485篇
  2004年   14694篇
  2003年   10206篇
  2002年   5163篇
  2001年   5914篇
  2000年   3270篇
  1999年   7214篇
  1998年   1057篇
  1992年   7803篇
  1991年   7950篇
  1990年   8166篇
  1989年   7736篇
  1988年   7198篇
  1987年   6873篇
  1986年   6609篇
  1985年   5817篇
  1984年   3991篇
  1983年   3253篇
  1982年   1192篇
  1981年   966篇
  1980年   1003篇
  1979年   4117篇
  1978年   2525篇
  1977年   1948篇
  1976年   1685篇
  1975年   2638篇
  1974年   3267篇
  1973年   2910篇
  1972年   2930篇
  1971年   2882篇
  1970年   2703篇
  1969年   2561篇
  1968年   2354篇
  1967年   2255篇
  1966年   1978篇
  1965年   1196篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
The aim of this safety study in mice was to determine in vivo toxicity and biodistribution potential of a single and multiple doses of L-glutamic acid-g-p(HEMA) polymeric nanoparticles as a drug delivery system. The single dose did not cause any lethal effect, and its acute oral LD50 was >2.000 mg/kg body weight (bw). Multiple doses (25, 50, or 100 mg/kg bw) given over 28 days resulted in no significant differences in body and relative organ weights compared to control. These results are supported by biochemical and histological findings. Moreover, nanoparticle exposure did not result in statistically significant differences in micronucleus counts in bone marrow cells compared to control. Nanoparticle distribution was time-dependent, and they reached the organs and even bone marrow by hour 6, as established by ex vivo imaging with the IVIS® spectrum imaging system. In conclusion, L-glutamic acid-g-p(HEMA) polymeric nanoparticles appear biocompatible and have a potential use as a drug delivery system.KEY WORDS: biocompatibility, blood biochemistry, genotoxicity, histology, in vivo toxicity, micronucleus test, polymers  相似文献   
2.
The Extracellular Vesicle Flow Cytometry Working Group ( http://www.evflowcytometry.org ) is formed by members of the International Society for Extracellular Vesicles (ISEV), the International Society for Advancement of Cytometry (ISAC), and the International Society on Thrombosis and Haemostasis (ISTH). This working group of flow cytometry experts develops guidelines for best practices regarding flow cytometry detection of extracellular vesicles. To improve rigor and standardization, this working group published a framework outlining the minimal information to report about a flow cytometry experiment on extracellular vesicles (MIFlowCyt-EV) in the Journal of Extracellular Vesicles, the ISEV journal, in 2020. In parallel, an article explaining MIFlowCyt-EV was published in Cytometry Part A, one of the ISAC journals, and now will be introduced to the ISTH as an SSC Communication in the Journal of Thrombosis and Haemostasis. The goal of this SSC Communication is to explain why flow cytometry is becoming the instrument of choice to characterize single extracellular vesicles, the obstacles that have been identified and (mostly) overcome by developing procedures to calibrate flow cytometers, and the relevance of reporting minimal information to improve reliability and reproducibility of experiments in which flow cytometers are used for characterization of extracellular vesicles.  相似文献   
3.
4.
The Dutch Drug Rediscovery Protocol (DRUP) and the Australian Cancer Molecular Screening and Therapeutic (MoST) Program are similar nonrandomized, multidrug, pan-cancer trial platforms that aim to identify signals of clinical activity of molecularly matched targeted therapies or immunotherapies outside their approved indications. Here, we report results for advanced or metastatic cancer patients with tumors harboring cyclin D-CDK4/6 pathway alterations treated with CDK4/6 inhibitors palbociclib or ribociclib. We included adult patients that had therapy-refractory solid malignancies with the following alterations: amplifications of CDK4, CDK6, CCND1, CCND2 or CCND3, or complete loss of CDKN2A or SMARCA4. Within MoST, all patients were treated with palbociclib, whereas in DRUP, palbociclib and ribociclib were assigned to different cohorts (defined by tumor type and alteration). The primary endpoint for this combined analysis was clinical benefit, defined as confirmed objective response or stable disease ≥16 weeks. We treated 139 patients with a broad variety of tumor types; 116 with palbociclib and 23 with ribociclib. In 112 evaluable patients, the objective response rate was 0% and clinical benefit rate at 16 weeks was 15%. Median progression-free survival was 4 months (95% CI: 3-5 months), and median overall survival 5 months (95% CI: 4-6 months). In conclusion, only limited clinical activity of palbociclib and ribociclib monotherapy in patients with pretreated cancers harboring cyclin D-CDK4/6 pathway alterations was observed. Our findings indicate that monotherapy use of palbociclib or ribociclib is not recommended and that merging data of two similar precision oncology trials is feasible.  相似文献   
5.
6.
7.
8.
BACKGROUND AND PURPOSE:In the chronic phase after traumatic brain injury, DTI findings reflect WM integrity. DTI interpretation in the subacute phase is less straightforward. Microbleed evaluation with SWI is straightforward in both phases. We evaluated whether the microbleed concentration in the subacute phase is associated with the integrity of normal-appearing WM in the chronic phase.MATERIALS AND METHODS:Sixty of 211 consecutive patients 18 years of age or older admitted to our emergency department ≤24 hours after moderate to severe traumatic brain injury matched the selection criteria. Standardized 3T SWI, DTI, and T1WI were obtained 3 and 26 weeks after traumatic brain injury in 31 patients and 24 healthy volunteers. At baseline, microbleed concentrations were calculated. At follow-up, mean diffusivity (MD) was calculated in the normal-appearing WM in reference to the healthy volunteers (MDz). Through linear regression, we evaluated the relation between microbleed concentration and MDz in predefined structures.RESULTS:In the cerebral hemispheres, MDz at follow-up was independently associated with the microbleed concentration at baseline (left: B = 38.4 [95% CI 7.5–69.3], P = .017; right: B = 26.3 [95% CI 5.7–47.0], P = .014). No such relation was demonstrated in the central brain. MDz in the corpus callosum was independently associated with the microbleed concentration in the structures connected by WM tracts running through the corpus callosum (B = 20.0 [95% CI 24.8–75.2], P < .000). MDz in the central brain was independently associated with the microbleed concentration in the cerebral hemispheres (B = 25.7 [95% CI 3.9–47.5], P = .023).CONCLUSIONS:SWI-assessed microbleeds in the subacute phase are associated with DTI-based WM integrity in the chronic phase. These associations are found both within regions and between functionally connected regions.

The yearly incidence of traumatic brain injury (TBI) is around 300 per 100,000 persons.1,2 Almost three-quarters of patients with moderate to severe TBI have traumatic axonal injury (TAI).3 TAI is a major predictor of functional outcome,4,5 but it is mostly invisible on CT and conventional MR imaging.6,7DTI provides direct information on WM integrity and axonal injury.5,8 However, DTI abnormalities are neither specific for TAI nor stable over time. Possibly because of the release of mass effect and edema and resorption of blood products, the effects of concomitant (non-TAI) injury on DTI are larger in the subacute than in the chronic phase (>3 months).4,9,10 Therefore, DTI findings are expected to reflect TAI more specifically in the chronic than in the subacute phase (1 week–3 months).4 Even in regions without concomitant injury, the effects of TAI on DTI are dynamic, possibly caused by degeneration and neuroplastic changes.6,11,12 These ongoing pathophysiological processes possibly contribute to the emerging evidence that DTI findings in the chronic phase are most closely associated with the eventual functional outcome.12,13Although DTI provides valuable information, its acquisition, postprocessing, and interpretation in individual patients are demanding. SWI, with which microbleeds can be assessed with high sensitivity, is easier to interpret and implement in clinical practice. In contrast to DTI, SWI-detected traumatic microbleeds are more stable1 except in the hyperacute14,15 and the late chronic phases.16 Traumatic cerebral microbleeds are commonly interpreted as signs of TAI. However, the relation is not straightforward. On the one hand, nontraumatic microbleeds may be pre-existing. On the other hand, even if traumatic in origin, microbleeds represent traumatic vascular rather than axonal injury.17 Indeed, TAI is not invariably hemorrhagic.18 Additionally, microbleeds may secondarily develop after trauma through mechanisms unrelated to axonal injury, such as secondary ischemia.18DTI is not only affected by pathophysiological changes but also by susceptibility.19 The important susceptibility-effect generated by microbleeds renders the interpretation of DTI findings at the location of microbleeds complex. In the chronic phase, mean diffusivity (MD) is the most robust marker of WM integrity.4,6 For these reasons, we evaluated MD in the normal-appearing WM.Much TAI research focuses on the corpus callosum because it is commonly involved in TAI5,18,20 and it can reliably be evaluated with DTI,5,21 and TAI in the corpus callosum is related to clinical prognosis.6,20 The corpus callosum consists of densely packed WM tracts that structurally and functionally connect left- and right-sided brain structures.22 The integrity of the corpus callosum is associated with the integrity of the brain structures it connects.23 Therefore, microbleeds in brain structures that are connected through the corpus callosum may affect callosal DTI findings. Analogous to this, microbleeds in the cerebral hemispheres, which exert their function through WM tracts traveling through the deep brain structures and brain stem,24,25 may affect DTI findings in the WM of the latter.Our purpose was to evaluate whether the microbleed concentration in the subacute phase is associated with the integrity of normal-appearing WM in the chronic phase. We investigated this relation within the cerebral hemispheres and the central brain and between regions that are functionally connected by WM tracts.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号