首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
特种医学   2篇
药学   1篇
  2022年   1篇
  2018年   2篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
Purpose

JWH-424, (8-bromo-1-naphthyl)(1-pentyl-1H-indol-3-yl)methanone, is a synthetic cannabinoid, which is a brominated analogue of JWH-018, one of the best-known synthetic cannabinoids. Despite the structural similarity to JWH-018, little is known about JWH-424 including its metabolism. The aim of the study was to compare human liver microsomes (HLM) and the fungus Cunninghamella elegans as the metabolism catalysts for JWH-424 to better understand the characteristic actions of the fungus in the synthetic cannabinoid metabolism.

Methods

JWH-424 was incubated with HLM for 1 h and Cunninghamella elegans for up to 72 h. The HLM incubation mixtures were diluted with methanol and fungal incubation mixtures were extracted with dichloromethane and reconstituted in methanol before analyses by liquid chromatography–high-resolution mass spectrometry (LC-HRMS).

Results

HLM incubation resulted in production of ten metabolites through dihydrodiol formation, hydroxylation, and/or ipso substitution of the bromine with a hydroxy group. Fungal incubation led to production of 23 metabolites through carboxylation, dihydrodiol formation, hydroxylation, ketone formation, glucosidation and/or sulfation.

Conclusions

Generally, HLM models give good predictions of human metabolites and structural analogues are metabolised in a similar fashion. However, major hydroxy metabolites produced by HLM were those hydroxylated at naphthalene instead of pentyl moiety, the major site of hydroxylation for JWH-018. Fungal metabolites, on the other hand, had undergone hydroxylation mainly at pentyl moiety. The metabolic disagreement suggests the necessity to verify the human metabolites in authentic urine samples, while H9 and H10 (hydroxynaphthalene), H8 (ipso substitution), F22 (hydroxypentyl), and F17 (dihydroxypentyl) are recommended for monitoring of JWH-424 in urinalysis.

  相似文献   
2.

Purpose

Identifying intake of synthetic cannabinoids generally requires the metabolism data of the drugs so that appropriate metabolite markers can be targeted in urine testing. However, the continuous appearance of new cannabinoids during the last decade has made it difficult to keep up with all the compounds including {1-[(1-methylpiperidin-2-yl)methyl]-1H-indol-3-yl}(naphthalen-1-yl)methanone (AM1220). In this study, metabolism of AM1220 was investigated with human liver microsomes and the fungus Cunninghamella elegans.

Methods

Metabolic stability of AM1220 was analysed by liquid chromatography–tandem mass spectrometry in multiple reaction monitoring mode after 1 µM incubation in human liver microsomes for 30 min. Tentative structure elucidation of metabolites was performed on both human liver microsome and fungal incubation samples using liquid chromatography–high-resolution mass spectrometry.

Results

Half-life of AM1220 was estimated to be 3.7 min, indicating a high clearance drug. Nine metabolites were detected after incubating human liver microsomes while seven were found after incubating Cunninghamella elegans, leading to 11 metabolites in total (five metabolites were common to both systems). Demethylation, dihydrodiol formation, combination of the two, hydroxylation and dihydroxylation were the observed biotransformations.

Conclusions

Three most abundant metabolites in both human liver microsomes and Cunninghamella elegans were desmethyl, dihydrodiol and hydroxy metabolites, despite different isomers of dihydrodiol and hydroxy metabolites in each model. These abundant metabolites can potentially be useful markers in urinalysis for AM1220 intake.
  相似文献   
3.
The number of new psychoactive substances keeps on rising despite the controlling efforts by law enforcement. Although metabolism of the newly emerging drugs is continuously studied to keep up with the new additions, the exact structures of the metabolites are often not identified due to the insufficient sample quantities for techniques such as nuclear magnetic resonance (NMR) spectroscopy. The aim of the study was to characterise several metabolites of the synthetic cannabinoid (1-pentyl-1H-indol-3-yl) (2,2,3,3-tetramethylcyclopropyl) methanone (UR-144) by NMR spectroscopy after the incubation with the fungus Cunninghamella elegans. UR-144 was incubated with C. elegans for 72 h, and the resulting metabolites were chromatographically separated. Six fractions were collected and analysed by NMR spectroscopy. UR-144 was also incubated with human liver microsomes (HLM), and the liquid chromatography-high resolution mass spectrometry analysis was performed on the HLM metabolites with the characterised fungal metabolites as reference standards. Ten metabolites were characterised by NMR analysis including dihydroxy metabolites, carboxy and hydroxy metabolites, a hydroxy and ketone metabolite, and a carboxy and ketone metabolite. Of these metabolites, dihydroxy metabolite, carboxy and hydroxy metabolites, and a hydroxy and ketone metabolite were identified in HLM incubation. The results indicate that the fungus is capable of producing human-relevant metabolites including the exact isomers. The capacity of the fungus C. elegans to allow for NMR structural characterisation by enabling production of large amounts of metabolites makes it an ideal model to complement metabolism studies.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号