首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7808篇
  免费   754篇
  国内免费   15篇
耳鼻咽喉   100篇
儿科学   152篇
妇产科学   187篇
基础医学   1126篇
口腔科学   138篇
临床医学   963篇
内科学   1358篇
皮肤病学   110篇
神经病学   928篇
特种医学   282篇
外科学   927篇
综合类   141篇
一般理论   5篇
预防医学   779篇
眼科学   97篇
药学   846篇
中国医学   8篇
肿瘤学   430篇
  2021年   118篇
  2020年   77篇
  2019年   93篇
  2018年   154篇
  2017年   115篇
  2016年   107篇
  2015年   147篇
  2014年   171篇
  2013年   294篇
  2012年   452篇
  2011年   466篇
  2010年   263篇
  2009年   222篇
  2008年   363篇
  2007年   381篇
  2006年   387篇
  2005年   392篇
  2004年   378篇
  2003年   357篇
  2002年   331篇
  2001年   223篇
  2000年   213篇
  1999年   190篇
  1998年   82篇
  1997年   72篇
  1996年   70篇
  1995年   75篇
  1994年   66篇
  1993年   67篇
  1992年   137篇
  1991年   125篇
  1990年   149篇
  1989年   117篇
  1988年   100篇
  1987年   95篇
  1986年   100篇
  1985年   89篇
  1984年   69篇
  1983年   75篇
  1982年   61篇
  1981年   57篇
  1979年   88篇
  1978年   76篇
  1977年   76篇
  1975年   57篇
  1974年   69篇
  1973年   51篇
  1972年   50篇
  1971年   67篇
  1970年   49篇
排序方式: 共有8577条查询结果,搜索用时 125 毫秒
1.
Volunteer infection studies using the induced blood stage malaria (IBSM) model have been shown to facilitate antimalarial drug development. Such studies have traditionally been undertaken in single‐dose cohorts, as many as necessary to obtain the dose‐response relationship. To enhance ethical and logistic aspects of such studies, and to reduce the number of cohorts needed to establish the dose‐response relationship, we undertook a retrospective in silico analysis of previously accrued data to improve study design. A pharmacokinetic (PK)/pharmacodynamic (PD) model was developed from initial fictive‐cohort data for OZ439 (mixing the data of the three single‐dose cohorts as: n = 2 on 100 mg, 2 on 200 mg, and 4 on 500 mg). A three‐compartment model described OZ439 PKs. Net growth of parasites was modeled using a Gompertz function and drug‐induced parasite death using a Hill function. Parameter estimates for the PK and PD models were comparable for the multidose single‐cohort vs. the pooled analysis of all cohorts. Simulations based on the multidose single‐cohort design described the complete data from the original IBSM study. The novel design allows for the ascertainment of the PK/PD relationship early in the study, providing a basis for rational dose selection for subsequent cohorts and studies.

Study Highlights
  • WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
☑ Volunteer infection studies are routinely used in antimalarial drug development to generate early pharmacokinetic/pharmacodynamic data for compounds.
  • WHAT QUESTION DID THIS STUDY ADDRESS?
☑ Can in silico analyses be used to suggest improvements to volunteer infection study designs?
  • WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
☑ Multiple dose adaptive trial designs can potentially reduce the number of cohorts needed to establish the dose‐response relationship in volunteer infection studies.
  • HOW MIGHT THIS CHANGE CLINICAL PHARMACOLOGY OR TRANSLATIONAL SCIENCE?
☑ Real time data analyses can be used to recommend doses for adaptive volunteer infection studies.

Volunteer infection studies using the induced blood stage malaria (IBSM) model have been recognized as a valuable system for defining the key pharmacokinetic (PK) and pharmacodynamic (PD) relationships for dose selection in antimalarial drug development. 1 , 2 , 3 , 4 , 5 , 6 , 7 In such studies, healthy volunteers are inoculated intravenously with a given quantity (with small variability) of Plasmodium‐infected red cells. Parasitemia is then followed by quantitative polymerase chain reaction until a prespecified treatment threshold is reached when the test drug is administered. Parasite and drug concentrations are then measured. These studies are conducted prior to phase II dose‐response (D‐R) trials and can be included in an integrated first‐in‐human study protocol, or after completion of the first‐in‐human PK and safety study. IBSM studies have been typically designed as flexible multiple cohort studies where each volunteer of one cohort receives a single dose of the same amount of drug (“single dose per cohort”). 2 , 3 , 4 , 5 After each cohort, a decision is made to stop or to add a cohort to test a lower or higher dose based on the response observed in the previous cohorts.For the multiple single‐dose‐per‐cohort design, the starting dose is typically selected based on safety and PK information from a phase I single ascending dose (SAD) study and, more recently, on preclinical data from a severe combined immunodeficient mouse model, with the dose selected on the basis of being best able to inform the D‐R relationship, rather than aiming for cure. This approach, where a single dose is tested in all subjects of the initial cohort, risks missing the dose likely to be most informative for defining the PK/PD relationship.An alternative approach is to spread a range of doses across a smaller number of subjects within the initial cohort and use PK/PD models developed based on data from this cohort to support dose selections of subsequent cohorts and studies. Using data from a previous study, 2 we undertook an in silico investigation of such an adaptive study design, aiming to reduce the number of subjects exposed to inefficacious doses, and to establish a D‐R relationship. This multiple‐dose‐groups‐per‐cohort design, referred to as the “2‐2‐4” design, is contrasted with the already implemented study design depicted in Figure  1 .Open in a separate windowFigure 1Comparison of standard and adaptive designs of IBSM studies. A/B/C, dose levels to be selected during the progress of the study based on pharmacokinetic/pharmacodynamic results of the initial cohort; CHMI, controlled human malaria infection; D‐R, dose‐response; IBSM, induced blood stage malaria infection; n, number of subjects at each dose.The objectives of this retrospective analysis were to: (i) compare PK/PD parameter estimates from the initial cohort of the 2‐2‐4 study design with the prior results from the data of the full study and (ii) propose a preliminary workflow to establish D‐R early in an IBSM study, and use modeling and simulation (M&S) to support dose selections for subsequent cohorts and later phase clinical trials.  相似文献   
2.
3.
4.
5.
Kinetic investigations of the quaternization reactions of poly[2‐(dimethylamino)ethyl methacrylate] (PDMAEMA) with alkyl halides (1‐iodobutane, 1‐iodoheptane, and 1‐iododecane) are carried out at different temperatures. For this purpose, a PDMAEMA (Mn = 17.8 kDa, Ð = 1.35) synthesized via reversible addition fragmentation chain transfer polymerization is utilized. The progress of the quaternization reactions is followed by proton nuclear magnetic resonance. As expected, the rate of quaternization is higher with increasing temperature. The experimental data are used to determine the following kinetic parameters: order of the reaction, Arrhenius' pre‐exponential factor, and activation energy. To the best of knowledge, this is the first contribution that provides detailed kinetic data of the quaternization reactions on PDMAEMA.  相似文献   
6.
7.
8.
9.
10.
Immune dysregulation is a cardinal feature of autoimmune diseases and chronic microbial infections. In particular, regulatory T cells are downregulated in autoimmune diseases while upregulated in chronic microbial infections. FOXP3 is the master regulator of Treg development. Treg-specific demethylated region (TSDR) is a highly conserved locus on the FOXP3 gene that is fully demethylated in natural Tregs but methylated in effector T cells. In our study, we used high resolution melt-polymerase chain reaction (HRM-PCR) to determine the FOXP3 TSDR methylation status in autoimmune diseases and chronic microbial infections. We found that FOXP3 TSDR to have the highest mean melting temperature (highly methylated) in active SLE patients compared to all the other groups (p?<?0.001). The psoriasis group also had a significantly high mean melting temperature (78.62?±?0.20) when compared with the inactive SLE group (78.49?±?0.29, p?<?0.05) and control group (78.44?±?0.25, p?<?0.01). There was no significant difference in melting temperature between inactive SLE and healthy controls. Disease activity in SLE was directly associated with methylation of the FOXP3 TSDR. On the other hand, patients with chronic microbial infections had significantly lower FOXP3 TSDR mean melting temperature (demethylated) when compared with healthy controls (78.28?±?0.21 vs 78.44?±?0.25, p?<?0.05). Our results suggest that the use of HRM-PCR to detect FOXP3 TSDR methylation status is a reliable and easy method to predict natural regulatory T cell levels in peripheral blood in different disease conditions. Determining FOXP3 TSDR methylation status can be a useful tool in diagnosis, and monitoring the severity of autoimmune diseases and chronic microbial infections.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号