首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  神经病学   6篇
  2008年   1篇
  2007年   1篇
  2002年   2篇
  1999年   1篇
  1982年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
Afferent discharge generated ectopically in the cell soma of dorsal root ganglion (DRG) neurons may play a role in normal sensation, and it contributes to paraesthesias and pain after nerve trauma. This activity is critically dependent on subthreshold membrane potential oscillations; oscillatory sinusoids that reach threshold trigger low-frequency trains of intermittent spikes. Ectopic firing may also enter a high-frequency bursting mode, however, particularly in the event of neuropathy. Bursting greatly amplifies the overall ectopic barrage. In the present report we show that subthreshold oscillations and burst discharge occur in vivo, as they do in vitro. We then show that although the first spike in each burst is triggered by an oscillatory sinusoid, firing within bursts is maintained by brief regenerative post-spike depolarizing afterpotentials (DAPs). Numerical simulations were used to identify the cellular process underlying rebound DAPs, and hence the mechanism of the spike bursts. Finally, we show that slow ramp and hold (tonic) depolarizations of the sort that occur in DRG neurons during physiologically relevant events are capable of triggering sustained ectopic bursting, but only in cells with subthreshold oscillatory behavior. Oscillations and DAPs are an essential substrate of ectopic burst discharge. Therefore, any consideration of the ways in which cellular regulation of ion channel synthesis and trafficking implement normal sensation and, when disrupted, bring about neuropathic pain must take into account the effects of this regulation on oscillations and bursting.  相似文献
2.
Whole cell patch-clamp recordings were obtained from dissociated mouse lumbar dorsal root ganglion (DRG) neurons. Recordings were made from control neurons and neurons axotomized by transection of the corresponding spinal nerve 1-2 days prior to dissociation. Medium to large muscle and cutaneous afferent neurons were identified by retrograde transport of True Blue or Fluoro-Gold injected into the corresponding peripheral tiss