首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   418篇
  免费   34篇
耳鼻咽喉   2篇
儿科学   6篇
妇产科学   2篇
基础医学   50篇
临床医学   59篇
内科学   149篇
皮肤病学   1篇
神经病学   19篇
特种医学   3篇
外科学   106篇
综合类   2篇
预防医学   15篇
药学   24篇
中国医学   1篇
肿瘤学   13篇
  2021年   5篇
  2019年   3篇
  2018年   6篇
  2017年   8篇
  2016年   5篇
  2015年   6篇
  2014年   12篇
  2013年   11篇
  2012年   20篇
  2011年   26篇
  2010年   11篇
  2009年   11篇
  2008年   26篇
  2007年   22篇
  2006年   24篇
  2005年   17篇
  2004年   15篇
  2003年   15篇
  2002年   9篇
  2001年   12篇
  2000年   10篇
  1999年   15篇
  1995年   2篇
  1994年   1篇
  1993年   3篇
  1992年   8篇
  1991年   7篇
  1990年   11篇
  1989年   8篇
  1988年   11篇
  1987年   8篇
  1986年   14篇
  1985年   7篇
  1984年   8篇
  1983年   9篇
  1982年   6篇
  1981年   5篇
  1980年   7篇
  1979年   8篇
  1978年   2篇
  1977年   5篇
  1976年   2篇
  1975年   5篇
  1974年   5篇
  1973年   3篇
  1972年   8篇
  1971年   4篇
  1966年   1篇
  1962年   1篇
  1961年   1篇
排序方式: 共有452条查询结果,搜索用时 140 毫秒
1.
The simultaneous assessment of insulin action, secretion, and hepatic extraction is key to understanding postprandial glucose metabolism in nondiabetic and diabetic humans. We review the oral minimal method (i.e., models that allow the estimation of insulin sensitivity, β-cell responsivity, and hepatic insulin extraction from a mixed-meal or an oral glucose tolerance test). Both of these oral tests are more physiologic and simpler to administer than those based on an intravenous test (e.g., a glucose clamp or an intravenous glucose tolerance test). The focus of this review is on indices provided by physiological-based models and their validation against the glucose clamp technique. We discuss first the oral minimal model method rationale, data, and protocols. Then we present the three minimal models and the indices they provide. The disposition index paradigm, a widely used β-cell function metric, is revisited in the context of individual versus population modeling. Adding a glucose tracer to the oral dose significantly enhances the assessment of insulin action by segregating insulin sensitivity into its glucose disposal and hepatic components. The oral minimal model method, by quantitatively portraying the complex relationships between the major players of glucose metabolism, is able to provide novel insights regarding the regulation of postprandial metabolism.  相似文献   
2.
The contribution of elevated glucagon-like peptide 1 (GLP-1) to postprandial glucose metabolism after Roux-en-Y gastric bypass (RYGB) has been the subject of uncertainty. We used exendin-9,39, a competitive antagonist of GLP-1, to examine glucose metabolism, islet hormone secretion, and gastrointestinal transit in subjects after RYGB and in matched control subjects. Subjects were studied in the presence or absence of exendin-9,39 infused at 300 pmol/kg/min. Exendin-9,39 resulted in an increase in integrated postprandial glucose concentrations post-RYGB (3.6 ± 0.5 vs. 2.0 ± 0.4 mol/6 h, P = 0.001). Exendin-9,39 decreased insulin concentrations (12.3 ± 2.2 vs. 18.1 ± 3.1 nmol/6 h, P = 0.002) and the β-cell response to glucose (ϕTotal, 13 ± 1 vs. 11 ± 1 × 10−9 min−1, P = 0.01) but did not alter the disposition index (DI). In control subjects, exendin-9,39 also increased glucose (2.2 ± 0.4 vs. 1.7 ± 0.3 mol/6 h, P = 0.03) without accompanying changes in insulin concentrations, resulting in an impaired DI. Post-RYGB, acceleration of stomach emptying during the first 30 min by exendin-9,39 did not alter meal appearance, and similarly, suppression of glucose production and stimulation of glucose disappearance were unaltered in RYGB subjects. These data indicate that endogenous GLP-1 has effects on glucose metabolism and on gastrointestinal motility years after RYGB. However, it remains uncertain whether this explains all of the changes after RYGB.  相似文献   
3.
Tendon transfers are often performed in the foot and ankle. Recently, interference screws have been a popular choice owing to their ease of use and fixation strength. Considering the benefits, one disadvantage of such devices is laceration of the soft tissues by the implant threads during placement that potentially weaken the structural integrity of the grafts. A shape memory polyetheretherketone bullet-in-sheath tenodesis device uses circumferential compression, eliminating potential damage from thread rotation and maintaining the soft tissue orientation of the graft. The aim of this study was to determine the pullout strength and failure mode for this device in both a synthetic bone analogue and porcine bone models. Thirteen mature bovine extensor tendons were secured into ten 4.0?×?4.0?×?4.0-cm cubes of 15-pound per cubic foot solid rigid polyurethane foam bone analogue models or 3 porcine femoral condyles using the 5?×?20-mm polyetheretherketone soft tissue anchor. The bullet-in-sheath device demonstrated a mean pullout of 280.84 N in the bone analog models and 419.47 N in the porcine bone models. (p?=?.001). The bullet-in-sheath design preserved the integrity of the tendon graft, and none of the implants dislodged from their original position.  相似文献   
4.

OBJECTIVE

Glucagon-like peptide (GLP)-1 receptor is encoded by GLP1R. The effect of genetic variation at this locus on the response to GLP-1 is unknown. This study assessed the effect of GLP1R polymorphisms on insulin secretion in response to hyperglycemia and to infused GLP-1 in nondiabetic subjects.

RESEARCH DESIGN AND METHODS

Eighty-eight healthy individuals (aged 26.3 ± 0.6 years, fasting glucose 4.83 ± 0.04 mmol/l) were studied using a hyperglycemic clamp. GLP-1 was infused for the last 2 h of the study (0.75 pmol/kg/min over 121–180 min, 1.5 pmol/kg/min over 181–240 min). β-Cell responsivity (ΦTotal) was measured using a C-peptide minimal model. The effect of 21 tag single nucleotide polymorphisms (SNPs) in GLP1R on ΦTotal was examined.

RESULTS

Two SNPs (rs6923761 and rs3765467) were nominally associated with altered β-cell responsivity in response to GLP-1 infusion.

CONCLUSIONS

Variation in GLP1R may alter insulin secretion in response to exogenous GLP-1. Future studies will determine whether such variation accounts for interindividual differences in response to GLP-1–based therapy.Expression of a nonsynonymous single nucleotide polymorphism (SNP), which results in substitution of methionine for threonine at position 149 of GLP1R in cell systems, decreases binding affinity for glucagon-like peptide (GLP)-1 and intracellular signaling after hormone-receptor binding (1). These functional effects suggest that genetic variation in GLP1R may alter responsiveness to GLP-1 in vivo. To examine this hypothesis, we used a hyperglycemic clamp, together with GLP-1–amide (7,36) infusion, and measured insulin secretion using a modification of the C-peptide minimal model to determine β-cell responsivity (ΦTotal) to GLP-1 in vivo.  相似文献   
5.
Activation of inflammatory pathways may contribute to the beginning and the progression of both atherosclerosis and type 2 diabetes. Here we report a novel interaction between insulin action and control of inflammation, resulting in glucose intolerance and vascular inflammation and amenable to therapeutic modulation. In insulin receptor heterozygous (Insr+/-) mice, we identified the deficiency of tissue inhibitor of metalloproteinase 3 (Timp3, an inhibitor of both TNF-alpha-converting enzyme [TACE] and MMPs) as a common bond between glucose intolerance and vascular inflammation. Among Insr+/- mice, those that develop diabetes have reduced Timp3 and increased TACE activity. Unchecked TACE activity causes an increase in levels of soluble TNF-alpha, which subsequently promotes diabetes and vascular inflammation. Double heterozygous Insr+/-Timp3+/- mice develop mild hyperglycemia and hyperinsulinemia at 3 months and overt glucose intolerance and hyperinsulinemia at 6 months. A therapeutic role for Timp3/TACE modulation is supported by the observation that pharmacological inhibition of TACE led to marked reduction of hyperglycemia and vascular inflammation in Insr+/- diabetic mice, as well as by the observation of increased insulin sensitivity in Tace+/- mice compared with WT mice. Our results suggest that an interplay between reduced insulin action and unchecked TACE activity promotes diabetes and vascular inflammation.  相似文献   
6.
We have previously demonstrated that estrogen receptor (ER) alpha (ESR1) increases proliferation of adrenocortical carcinoma (ACC) through both an estrogen-dependent and -independent (induced by IGF-II/IGF1R pathways) manner. Then, the use of tamoxifen, a selective estrogen receptor modulator (SERM), appears effective in reducing ACC growth in vitro and in vivo. However, tamoxifen not only exerts antiestrogenic activity, but also acts as full agonist on the G protein-coupled estrogen receptor (GPER). Aim of this study was to investigate the effect of a non-steroidal GPER agonist G-1 in modulating ACC cell growth. We found that G-1 is able to exert a growth inhibitory effect on H295R cells both in vitro and, as xenograft model, in vivo. Treatment of H295R cells with G-1 induced cell cycle arrest, DNA damage and cell death by the activation of the intrinsic apoptotic mechanism. These events required sustained extracellular regulated kinase (ERK) 1/2 activation. Silencing of GPER by a specific shRNA partially reversed G-1-mediated cell growth inhibition without affecting ERK activation. These data suggest the existence of G-1 activated but GPER-independent effects that remain to be clarified. In conclusion, this study provides a rational to further study G-1 mechanism of action in order to include this drug as a treatment option to the limited therapy of ACC.  相似文献   
7.
While it is well established that people with non-insulin dependent diabetes mellitus have defects in both insulin secretion and action, the relative contribution of each to glucose intolerance is not known. Therefore, nondiabetic (lean and obese) and non-insulin dependent diabetes mellitus subjects were studied on two occasions. On each occasion, insulin secretion was inhibited with somatostatin and glucose was infused in a pattern and amount that mimicked the systemic delivery rate normally observed after ingestion of 50 g of glucose. Insulin also was infused so as to mimic postprandial insulin profiles observed in separate groups of diabetic and nondiabetic subjects after food ingestion. Glucose turnover was measured using the isotope dilution method. A delayed pattern of insulin delivery (i.e., a "diabetic" insulin profile) led to higher (P < 0.05) glucose concentrations in all groups; however, the effects were transient, resulting in only a modest increase in the integrated glycemic responses. An isolated defect in insulin action had little effect on peak glucose concentration; however, it prolonged the duration of hyperglycemia, leading to a 2.5-4.2-fold increase (P < 0.05) in the integrated glycemic response. A combined defect in the pattern of insulin secretion and action was additive rather than synergistic. Both defects caused hyperglycemia by altering suppression of endogenous glucose release and stimulation of glucose disposal. Whereas obese diabetic and nondiabetic subjects had comparable defects in glucose clearance, non-insulin dependent diabetes mellitus subjects also had defects in hepatic insulin action. Thus, abnormalities in the pattern of insulin secretion and action alone or in combination impair glucose tolerance. An isolated defect in insulin action has a more pronounced and prolonged effect than does an isolated change in the pattern of insulin secretion. Hepatic and extrahepatic insulin resistance results in marked and sustained hyperglycemia.  相似文献   
8.
Exendin-(9,39) is a competitive antagonist of glucagon-like peptide-1 (GLP-1) at its receptor. However, it is unclear if it has direct and unique effects of its own. We tested the hypothesis that exendin-(9,39) and GLP-1-(9,36)amide have direct effects on hormone secretion and β-cell function as well as glucose metabolism in healthy subjects. Glucose containing [3-3H]glucose was infused to mimic the systemic appearance of glucose after a meal. Saline, GLP-1-(9,36)amide, or exendin-(9,39) at 30 pmol/kg/min (Ex 30) or 300 pmol/kg/min (Ex 300) were infused in random order on separate days. Integrated glucose concentrations were slightly but significantly increased by exendin-(9,39) (365 ± 43 vs. 383 ± 35 vs. 492 ± 49 vs. 337 ± 50 mmol per 6 h, saline, Ex 30, Ex 300, and GLP-1-[9,36]amide, respectively; P = 0.05). Insulin secretion did not differ among groups. However, insulin action was lowered by exendin-(9,39) (25 ± 4 vs. 20 ± 4 vs. 18 ± 3 vs. 21 ± 4 10−4 dL/kg[min per μU/mL]; P = 0.02), resulting in a lower disposition index (DI) during exendin-(9,39) infusion (1,118 ± 118 vs. 816 ± 83 vs. 725 ± 127 vs. 955 ± 166 10−14 dL/kg/min2 per pmol/L; P = 0.003). Endogenous glucose production and glucose disappearance did not differ significantly among groups. We conclude that exendin-(9,39), but not GLP-1-(9,36)amide, decreases insulin action and DI in healthy humans.The incretin hormone glucagon-like peptide-1 (GLP-1) arises by posttranslational processing of preproglucagon in the enteroendocrine L cells distributed throughout the intestine. GLP-1 secretion occurs within minutes of food ingestion, is a potent insulin secretagogue, and suppresses glucagon (1). However, the active form(s) of GLP-1 are rapidly deactivated by a serine protease dipeptidyl peptidase-4, which cleaves the two NH2-terminal amino acids necessary for activation of the GLP-1 receptor (GLP-1R). This enzyme is widely distributed so that the half-life of active GLP-1 in the circulation is ∼1 min (2). The resulting metabolite GLP-1-(9,36) has been proposed as a potential antagonist of GLP-1R, although at present there is no evidence of an effect of this peptide on insulin secretion (3).Exendin-(7,39) is a naturally occurring analog of GLP-1-(7,36) and is an agonist of the GLP-1R. This compound binds to GLP-1R with greater affinity than the natural ligand due to a nine–amino acid COOH-terminal sequence absent in native GLP-1 (4). On the other hand, exendin-(9,39), which arises from the removal of the two NH2-terminal amino acids, is a competitive antagonist of GLP-1 at the GLP-1R (5). It has been used to examine the effects of endogenous GLP-1 secretion on glucose homeostasis (6). Although it is presumed that exendin-(9,39) has no direct effects on glucose metabolism, it alters gastric emptying and capacitance through vagal mechanisms, thereby altering glucose tolerance independent of its ability to inhibit GLP-1-(7,36) effects on insulin and glucagon secretion (7,8). A direct effect of GLP-1-(9,36) signaling on glucose metabolism has been reported (9).The present studies were undertaken to determine whether exendin-(9,39) and GLP-1-(9,36)amide have direct effects on β-cell function, insulin action, glucagon secretion, and glucose metabolism. We did so by infusing glucose in a manner that mimicked the systemic appearance of glucose after ingestion of carbohydrate. Since glucose was infused intravenously, this created a model that resulted in the stimulation of insulin and suppression of glucagon in the absence of a change in endogenous GLP-1 concentrations. Subjects were studied on four occasions: receiving, in random order, saline, exendin-(9,39) infused at 30 pmol/kg/min (Ex 30) and at 300 pmol/kg/min (Ex 300), and GLP-1-(9,36)amide. Glucose turnover was measured on each occasion using [3-3H]glucose; insulin secretion and action were measured using the minimal model.  相似文献   
9.
Pancreas transplantation for the prevention of diabetic nephropathy   总被引:2,自引:0,他引:2  
Diabetic nephropathy is the leading cause of kidney failure in the United States. Poor glycemic control, hypertension, and smoking have been implicated as risk factors for the development and progression of diabetic nephropathy in patients with type 1 diabetes mellitus. Improved medical therapy including angiotensin-converting enzyme inhibitors and tight glycemic control with use of intensive insulin therapy have been shown to reduce the progression of diabetic nephropathy substantially based on albumin excretion rates. Despite these improvements in medical management, many patients still experience progression from early diabetic nephropathy to end-stage renal disease. Successful pancreas transplantation leads to normal glycemic control in patients with type 1 diabetes, but historically it has generally been limited to patients with both kidney failure and diabetes. In this review of the current treatment of diabetic nephropathy, we examine the potential role of preemptive pancreas transplantation in patients with diabetic nephropathy.  相似文献   
10.
A method of preparation for therapeutic use of a concentrate of factors IX, II and X and a separate concentrate of factor VII is described. The method is based upon adsorption of the factors on DEAE-cellulose from plasma or from the supernatant after removal of factor VIII. Conditions of elution are selected so that, in a single step, the factors are obtained at a suitable salt concentration and potency to permit injection of a therapeutic dose by syringe. The yield of factor IX in vitro is about 50–75% and the purification about 300-fold. The yield of factor VII is lower and variable. Experience in the use of 14 batches of factor-IX concentrate in the treatment of 29 patients and on the use of a batch of factor-VII concentrate in the treatment of one patient is described. The in vivo dose response to factor IX made by different methods is compared.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号