首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2055篇
  免费   208篇
  国内免费   5篇
耳鼻咽喉   18篇
儿科学   52篇
妇产科学   36篇
基础医学   304篇
口腔科学   25篇
临床医学   203篇
内科学   562篇
皮肤病学   77篇
神经病学   118篇
特种医学   29篇
外科学   244篇
综合类   33篇
一般理论   5篇
预防医学   175篇
眼科学   15篇
药学   227篇
中国医学   2篇
肿瘤学   143篇
  2023年   13篇
  2021年   67篇
  2020年   26篇
  2019年   41篇
  2018年   40篇
  2017年   33篇
  2016年   39篇
  2015年   51篇
  2014年   66篇
  2013年   90篇
  2012年   171篇
  2011年   154篇
  2010年   75篇
  2009年   66篇
  2008年   124篇
  2007年   105篇
  2006年   129篇
  2005年   140篇
  2004年   122篇
  2003年   139篇
  2002年   119篇
  2001年   45篇
  2000年   33篇
  1999年   29篇
  1998年   19篇
  1997年   22篇
  1996年   21篇
  1995年   24篇
  1994年   15篇
  1993年   16篇
  1992年   21篇
  1991年   12篇
  1990年   13篇
  1989年   18篇
  1988年   13篇
  1987年   10篇
  1986年   9篇
  1985年   7篇
  1984年   7篇
  1983年   10篇
  1982年   10篇
  1981年   14篇
  1980年   9篇
  1979年   9篇
  1978年   12篇
  1977年   8篇
  1974年   5篇
  1973年   6篇
  1972年   6篇
  1969年   5篇
排序方式: 共有2268条查询结果,搜索用时 31 毫秒
1.
ObjectiveTo study the clinical features and identify unique renal neoplasia subtypes and their prognostic implications in individuals with tuberous sclerosis complex (TSC).Patients and MethodsThe Mayo Clinic nephrectomy registry included 37 patients with TSC diagnosed between 1970 and 2018. Four additional patients were identified from the pathology consultation and autopsy files. All available renal tumors were further characterized using immunohistochemistry and fluorescence in situ hybridization. Clinicopathologic features and follow-up were obtained from the medical record. The American Association for Cancer Research Project GENIE registry was accessed using cBioPortal for molecular profiling of angiomyolipoma (AML).ResultsA total of 276 renal tumors from 41 patients were analyzed. Renal tumors were classified into 9 distinct morphological subtypes, with AML predominating (238 [86%]). Interestingly, all these tumors acted in a benign fashion except one renal cell carcinoma with clear cells and fibromyomatous stroma and one epithelioid AML that metastasized. Molecular profiling studies revealed that epithelioid AMLs were enriched for alterations of TP53, RB1, and ATRX. Eight patients died of direct complications of TSC, including 3 of end-stage renal disease. To date, none have died of a renal epithelial neoplasm.ConclusionThe identification of unique renal neoplasia subtypes may provide important clues to establish a diagnosis of TSC, and in the somatic setting, this finding has important implications for accurate prognostication. These tumors tend to be indolent, and only 2 of 276 tumors in our study exhibited metastatic behavior. Our results support multidisciplinary management with a focus on preservation of renal function.  相似文献   
2.
3.

Objective

To derive and validate a new ecological measure of the social determinants of health (SDoH), calculable at the zip code or county level.

Data Sources and Study Setting

The most recent releases of secondary, publicly available data were collected from national U.S. health agencies as well as state and city public health departments.

Study Design

The Social Vulnerability Metric (SVM) was constructed from U.S. zip-code level measures (2018) from survey data using multidimensional Item Response Theory and validated using outcomes including all-cause mortality (2016), COVID-19 vaccination (2021), and emergency department visits for asthma (2018). The SVM was also compared with the existing Centers for Disease Control and Prevention's Social Vulnerability Index (SVI) to determine convergent validity and differential predictive validity.

Data Collection/Extraction Methods

The data were collected directly from published files available to the public online from national U.S. health agencies as well as state and city public health departments.

Principal Findings

The correlation between SVM scores and national age-adjusted county all-cause mortality was r = 0.68. This correlation demonstrated the SVM's robust validity and outperformed the SVI with an almost four-fold increase in explained variance (46% vs. 12%). The SVM was also highly correlated (r ≥ 0.60) to zip-code level health outcomes for the state of California and city of Chicago.

Conclusions

The SVM offers a measurement tool improving upon the performance of existing SDoH composite measures and has broad applicability to public health that may help in directing future policies and interventions. The SVM provides a single measure of SDoH that better quantifies associations with health outcomes.  相似文献   
4.
Background

Hyperpolarized helium 3 magnetic resonance imaging (3He MRI) is useful for investigating pulmonary physiology of pediatric asthma, but a detailed assessment of the safety profile of this agent has not been performed in children.

Objective

To evaluate the safety of 3He MRI in children and adolescents with asthma.

Materials and methods

This was a retrospective observational study. 3He MRI was performed in 66 pediatric patients (mean age 12.9 years, range 8–18 years, 38 male, 28 female) between 2007 and 2017. Fifty-five patients received a single repeated examination and five received two repeated examinations. We assessed a total of 127 3He MRI exams. Heart rate, respiratory rate and pulse oximetry measured oxygen saturation (SpO2) were recorded before, during (2 min and 5 min after gas inhalation) and 1 h after MRI. Blood pressure was obtained before and after MRI. Any subjective symptoms were also noted. Changes in vital signs were tested for significance during the exam and divided into three subject age groups (8–12 years, 13–15 years, 16–18 years) using linear mixed-effects models.

Results

There were no serious adverse events, but three minor adverse events (2.3%; headache, dizziness and mild hypoxia) were reported. We found statistically significant increases in heart rate and SpO2 after 3He MRI. The youngest age group (8–12 years) had an increased heart rate and a decreased respiratory rate at 2 min and 5 min after 3H inhalation, and an increased SpO2 post MRI.

Conclusion

The use of 3He MRI is safe in children and adolescents with asthma.

  相似文献   
5.
Locally adapted temperate tree populations exhibit genetic trade-offs among climate-related traits that can be exacerbated by selective breeding and are challenging to manage under climate change. To inform climatically adaptive forest management, we investigated the genetic architecture and impacts of selective breeding on four climate-related traits in 105 natural and 20 selectively bred lodgepole pine populations from western Canada. Growth, cold injury, growth initiation, and growth cessation phenotypes were tested for associations with 18,600 single-nucleotide polymorphisms (SNPs) in natural populations to identify “positive effect alleles” (PEAs). The effects of artificial selection for faster growth on the frequency of PEAs associated with each trait were quantified in breeding populations from different climates. Substantial shifts in PEA proportions and frequencies were observed across many loci after two generations of selective breeding for height, and responses of phenology-associated PEAs differed strongly among climatic regions. Extensive genetic overlap was evident among traits. Alleles most strongly associated with greater height were often associated with greater cold injury and delayed phenology, although it is unclear whether potential trade-offs arose directly from pleiotropy or indirectly via genetic linkage. Modest variation in multilocus PEA frequencies among populations was associated with large phenotypic differences and strong climatic gradients, providing support for assisted gene flow polices. Relationships among genotypes, phenotypes, and climate in natural populations were maintained or strengthened by selective breeding. However, future adaptive phenotypes and assisted gene flow may be compromised if selective breeding further increases the PEA frequencies of SNPs involved in adaptive trade-offs among climate-related traits.

Local adaptation of climate-related traits in widespread temperate conifers has been demonstrated for centuries using extensive long-term common garden experiments (1, 2). As early as the 17th century, foresters were instructed to recognize variation in desirable traits and select seed from trees with favorable phenotypes (3). Modern tree improvement programs systematically select upon genetic variation, primarily to achieve growth gains and meet economic objectives. Estimates of genetic variation and gains from selection made using quantitative genetic models assume many anonymous loci of small effect underlie both variation in continuously distributed phenotypes and their responses to selective breeding. However, the type, quantity, effect size, distribution, and dynamics of genes underlying locally adaptive phenotypic variation and responses to selective breeding in forest trees are still poorly understood (4).Directional selection over hundreds or thousands of generations has led to genomic features of domestication in agricultural crops including simplified genetic architectures underlying many traits, reduced genome-wide diversity, and numerous selective sweeps (57). Beyond high-gain, short-rotation clonal forestry [e.g., Eucalyptus spp. (8)], we know little about the effects of artificial selection on adaptive genetic variation in forest trees, yet many tree species undergo some degree of selective breeding. Two or three generations of conifer breeding is not expected to have the same magnitude of genetic effects seen in domesticated crops, but if artificial selection for increased productivity is detectable in conifer genomes, it may expose genetic relationships and potential sources of trade-offs between growth and climatically adaptive phenotypes.Climate-related adaptive traits are often intercorrelated due to pleiotropy, natural selection, or linkage disequilibrium (LD), so that strong directional selection on one trait can cause correlated responses in others. Pleiotropic allelic variants associated with phenotypes do not function in isolation. Antagonistic pleiotropic effects among traits can generate adaptive trade-offs among traits within populations, and limit gains from selection on a focal trait (9). Trait–trait correlations can also arise through strong selection acting in parallel on unlinked loci or from LD mediated by physical linkage of loci on chromosomes. Average genome-wide LD estimates in conifers appear to be low (10, 11) but may be greater (r2 of 0.2–0.4) within genes under strong selection (12).Conifer studies have identified putatively adaptive phenotype-associated alleles on a locus-by-locus basis using quantitative trait loci (QTL) mapping or genotype–phenotype associations (GPAs) (also known as genome-wide association studies [GWAS]) (13). Genotype–environment association analyses in conifers have identified putatively adaptive environmentally associated loci (e.g., 14, 15), but loci are usually anonymous relative to adaptive phenotypes. All of these approaches are biased toward detecting loci with large phenotypic effects, but expectations that genome scans will discover individual adaptive loci with large effects or frequency differences among populations may be biologically and statistically unrealistic (16, 17). Conifer GPA studies typically detect relatively few statistically significant loci, and locus-by-locus analyses are insufficient to characterize adaptive genome-wide variation associated with adaptive traits and signatures of selective breeding. Multilocus tests for adaptive polygenic signatures of selection have been developed (e.g., refs. 18 and 19), but significant limitations remain (reviewed in refs. 20 and 21).Uncertainty about the effects of selective breeding on adaptive genetic variation is layered upon expectations that forest trees will become maladapted as climates shift (22). Efforts are being made to estimate maladaptation using genome-wide variation associated with adaptive traits and climate (23, 24), because conserving, managing, and efficiently redeploying genetic variation associated with adaptive phenotypes will be a necessary element of strategies to mitigate the effects of shifting climates on forest resources (25). Assisted gene flow strategies in temperate and subboreal forests generally aim to move trees to cooler climates in anticipation of future warming, but trees must then contend with the increased short- to medium-term risk of maladaptation to damaging frost. This means cold tolerance is, perhaps surprisingly, an important trait when planning for warming climates.Genetic approaches have the potential to efficiently and accurately characterize local adaptation to climate. Understanding whether this potential can be realized in a technically robust and operationally feasible way, and whether selection for faster growth compromises genetic variation associated with phenotypic adaptation to climate, has far-reaching implications for developing effective assisted gene flow strategies that mitigate negative climate change impacts on forest health and timber production (26, 27). In this context, our research objectives are to 1) identify the genetic architecture of climate-related adaptive traits in interior lodgepole pine (Pinus contorta Dougl. ex Loud. var. latifolia Engelm.); 2) identify genome-wide effects of artificial selection for increased productivity on climate-related traits; and 3) assess the implications of genetic responses to selection for assisted gene flow strategies.Our study combines climatic data, genotype data from ∼50,000 lodgepole pine single-nucleotide polymorphisms (SNPs), and seedling phenotypic data for height, cold injury, growth initiation, and growth cessation traits. These data were collected from a seedling common garden that sampled reforestation seed lots from 105 natural populations and 20 breeding populations from across the species’ range in Alberta (AB) and British Columbia (BC), Canada (Fig. 1 and SI Appendix, Table S1). For each of the four traits, we identify range-wide GPAs using 929 seedlings from all 105 natural populations. Then for the 1% most strongly phenotype-associated SNPs, we examine how artificial selection within breeding populations has changed allele frequencies at individual SNP loci, within individual seedlings, populations (breeding zones), and three climatic regions (Fig. 1). Using elements from the approach of Turchin et al. (18), we study changes in frequency of the alleles that have a positive effect on adaptive traits (positive effect alleles [PEAs]). At each SNP locus, a PEA is the allele associated with increasing numeric values of the respective phenotype, determined in this case through GPA analyses in the natural seedling populations. PEAs reported here are associated with greater seedling height, greater cold injury, delayed growth initiation, and delayed growth cessation. To parse physical genetic linkage from allelic associations due to other causes, we compare LD estimated from our natural seedlings with estimates of recombination among haploid megagametophytes from a single maternal parent, where physical linkage is the only cause of LD. Integrating genetic, climatic, and phenotypic data gives us a robust basis to detect the effects of artificial selection on climate-related genotypes that are relevant to breeding and assisted gene flow strategies.Open in a separate windowFig. 1.Geographic origins of the natural and selected seedling populations sampled from across the range of lodgepole pine in Alberta (AB) and British Columbia (BC). Natural populations are represented by filled circles; selected seedling breeding zones are represented by filled polygons. The three climatic regions we used were AB, BC-Central, and BC-South. AB breeding zones are formally identified as A, B1, B2, C, J, and K1. BC-Central breeding zone abbreviations are as follows: BV, Bulkley Valley; CP, Central Plateau; and PG, Prince George. BC-South breeding zone abbreviations are as follows: EK, East Kootenay; NE, Nelson; and TO, Thompson–Okanagan. Reprinted from ref. 35, with permission from Elsevier.  相似文献   
6.
7.
8.
We conducted two studies to determine whether the minimum clinically significant difference in the visual analog scale (VAS) for nearly simultaneous and brief-interval serial assessments of pain is less than that for pain assessment at 20- to 30-minute intervals, using a 10-cm VAS. The first study was a blinded, randomized, placebo-controlled paired trial comparing the pain of intravenous cannulation in both hands (20-minute application of a eutectic mixture of local anesthetics v placebo) of study subjects. The second study was a non-blinded, randomized, paired trial of different treatments for jellyfish stings. In the first study, 37 of 40 subjects indicated that one hand experienced more pain than the other. Eleven of these 37 subjects (30%) indicated differences in VAS values of 1.0 cm or less, with a minimum value of 0.5 cm. In the second study, for all the VAS-based pain comparisons, VAS differences of 相似文献   
9.
Allogeneic hematopoietic stem cell transplantation (HSCT) with reduced-intensity conditioning (RIC) offers a curative option for patients with hematologic malignancies who are unable to undergo myeloablative conditioning, but its success is limited by high rates of relapse. Several studies have suggested a role for T cell doses in peripheral blood stem cell grafts in RIC HSCT. Because T cell dose is typically not known until after the collection, and apheresis blood volume is easily modifiable, we hypothesized that higher donor apheresis blood volumes would improve transplantation outcomes through an effect on graft composition. Thus, we analyzed the relationships between apheresis volume, graft composition, and transplantation outcomes in 142 consecutive patients undergoing unrelated donor allogeneic RIC HSCT. We found that apheresis volume ≥15 L was associated with a significantly decreased risk of relapse (adjusted hazard ratio [aHR], .48; 95% confidence interval [CI], .28 to .84]; P?=?.01) and improved relapse-free survival (aHR, .56; 95% CI, .35 to .89; P?=?.02) and overall survival (aHR, .55; 95% CI, .34 to .91; P?=?.02). A high apheresis volume was not associated with increased rates of acute or chronic graft-versus-host disease. These results demonstrate that an apheresis volume of at least 15 L is independently predictive of improved transplantation outcomes after RIC allogeneic HSCT.  相似文献   
10.
The narrowing of diversity in crop species contributing to the world’s food supplies has been considered a potential threat to food security. However, changes in this diversity have not been quantified globally. We assess trends over the past 50 y in the richness, abundance, and composition of crop species in national food supplies worldwide. Over this period, national per capita food supplies expanded in total quantities of food calories, protein, fat, and weight, with increased proportions of those quantities sourcing from energy-dense foods. At the same time the number of measured crop commodities contributing to national food supplies increased, the relative contribution of these commodities within these supplies became more even, and the dominance of the most significant commodities decreased. As a consequence, national food supplies worldwide became more similar in composition, correlated particularly with an increased supply of a number of globally important cereal and oil crops, and a decline of other cereal, oil, and starchy root species. The increase in homogeneity worldwide portends the establishment of a global standard food supply, which is relatively species-rich in regard to measured crops at the national level, but species-poor globally. These changes in food supplies heighten interdependence among countries in regard to availability and access to these food sources and the genetic resources supporting their production, and give further urgency to nutrition development priorities aimed at bolstering food security.A shared axiom of ecology and nutrition is that, within certain ranges, diversity enhances the health and function of complex biological systems. Species diversity has been shown to stimulate productivity, stability, ecosystem services, and resilience in natural (15) and in agricultural ecosystems (613). Likewise, variation in food species contributing to diet has been associated with nutritional adequacy (1417) and food security (18).The development of sedentary agricultural societies and further rise of modern agriculture is generally considered to have led to a decline in the total number of plant species upon which humans depend for food (19, 20), particularly the wild, semidomesticated, and cultivated vegetables and fruits, spices, and other food plants that supplemented staple crops with the provision of micronutrients and that bolstered food security historically during crop failures (21). Harlan (20) warned that
most of the food for mankind comes from a small number of crops and the total number is decreasing steadily. In the United States in the past 40 years, many vegetables and fruits have disappeared from the diet, and the trend is going on all over the world. More and more people will be fed by fewer and fewer crops.
More recent analyses of dietary transition in developing countries in association with globalization have noted increases in the diversity of plants contributing to diets locally, along with a Westernization transition in preference of energy-dense foods (i.e., animal products, plant oils, and sugars) over cereals, pulses, and vegetables, and of particular major crop plants within these food categories over traditional crops (22, 23). The impact of such changes on overall crop diversity worldwide has not been comprehensively documented, although recent changes in varietal and allelic level diversity of some crops have been investigated (2426). Given the potential food security implications of narrowing of the diversity of crop species both in production systems and in food supplies, an assessment of the global state of crop plant species diversity is warranted.Here we examine changes in the diversity of the portfolio of crop species upon which humans primarily depend for food security in regard to calories, protein, fat, and food weight. Using national per capita food supply data published by the Food and Agriculture Organization (FAO) of the United Nations, we analyzed trends in the richness, abundance, and composition of measured crop commodities in the food supplies of 152 countries comprising 98% of the world’s population from 1961 to 2009.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号