首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6986篇
  免费   771篇
  国内免费   26篇
耳鼻咽喉   101篇
儿科学   223篇
妇产科学   208篇
基础医学   921篇
口腔科学   111篇
临床医学   1030篇
内科学   1309篇
皮肤病学   57篇
神经病学   679篇
特种医学   302篇
外科学   873篇
综合类   130篇
一般理论   7篇
预防医学   773篇
眼科学   107篇
药学   564篇
中国医学   6篇
肿瘤学   382篇
  2023年   50篇
  2021年   167篇
  2020年   117篇
  2019年   151篇
  2018年   153篇
  2017年   108篇
  2016年   112篇
  2015年   126篇
  2014年   176篇
  2013年   231篇
  2012年   350篇
  2011年   376篇
  2010年   194篇
  2009年   156篇
  2008年   318篇
  2007年   303篇
  2006年   317篇
  2005年   325篇
  2004年   284篇
  2003年   258篇
  2002年   273篇
  2001年   260篇
  2000年   254篇
  1999年   196篇
  1998年   83篇
  1997年   65篇
  1996年   63篇
  1995年   57篇
  1994年   53篇
  1993年   60篇
  1992年   175篇
  1991年   142篇
  1990年   163篇
  1989年   140篇
  1988年   125篇
  1987年   119篇
  1986年   106篇
  1985年   113篇
  1984年   76篇
  1983年   67篇
  1981年   54篇
  1979年   71篇
  1978年   63篇
  1977年   47篇
  1976年   36篇
  1975年   40篇
  1974年   52篇
  1973年   80篇
  1972年   67篇
  1970年   42篇
排序方式: 共有7783条查询结果,搜索用时 15 毫秒
1.
Volunteer infection studies using the induced blood stage malaria (IBSM) model have been shown to facilitate antimalarial drug development. Such studies have traditionally been undertaken in single‐dose cohorts, as many as necessary to obtain the dose‐response relationship. To enhance ethical and logistic aspects of such studies, and to reduce the number of cohorts needed to establish the dose‐response relationship, we undertook a retrospective in silico analysis of previously accrued data to improve study design. A pharmacokinetic (PK)/pharmacodynamic (PD) model was developed from initial fictive‐cohort data for OZ439 (mixing the data of the three single‐dose cohorts as: n = 2 on 100 mg, 2 on 200 mg, and 4 on 500 mg). A three‐compartment model described OZ439 PKs. Net growth of parasites was modeled using a Gompertz function and drug‐induced parasite death using a Hill function. Parameter estimates for the PK and PD models were comparable for the multidose single‐cohort vs. the pooled analysis of all cohorts. Simulations based on the multidose single‐cohort design described the complete data from the original IBSM study. The novel design allows for the ascertainment of the PK/PD relationship early in the study, providing a basis for rational dose selection for subsequent cohorts and studies.

Study Highlights
  • WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
☑ Volunteer infection studies are routinely used in antimalarial drug development to generate early pharmacokinetic/pharmacodynamic data for compounds.
  • WHAT QUESTION DID THIS STUDY ADDRESS?
☑ Can in silico analyses be used to suggest improvements to volunteer infection study designs?
  • WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
☑ Multiple dose adaptive trial designs can potentially reduce the number of cohorts needed to establish the dose‐response relationship in volunteer infection studies.
  • HOW MIGHT THIS CHANGE CLINICAL PHARMACOLOGY OR TRANSLATIONAL SCIENCE?
☑ Real time data analyses can be used to recommend doses for adaptive volunteer infection studies.

Volunteer infection studies using the induced blood stage malaria (IBSM) model have been recognized as a valuable system for defining the key pharmacokinetic (PK) and pharmacodynamic (PD) relationships for dose selection in antimalarial drug development. 1 , 2 , 3 , 4 , 5 , 6 , 7 In such studies, healthy volunteers are inoculated intravenously with a given quantity (with small variability) of Plasmodium‐infected red cells. Parasitemia is then followed by quantitative polymerase chain reaction until a prespecified treatment threshold is reached when the test drug is administered. Parasite and drug concentrations are then measured. These studies are conducted prior to phase II dose‐response (D‐R) trials and can be included in an integrated first‐in‐human study protocol, or after completion of the first‐in‐human PK and safety study. IBSM studies have been typically designed as flexible multiple cohort studies where each volunteer of one cohort receives a single dose of the same amount of drug (“single dose per cohort”). 2 , 3 , 4 , 5 After each cohort, a decision is made to stop or to add a cohort to test a lower or higher dose based on the response observed in the previous cohorts.For the multiple single‐dose‐per‐cohort design, the starting dose is typically selected based on safety and PK information from a phase I single ascending dose (SAD) study and, more recently, on preclinical data from a severe combined immunodeficient mouse model, with the dose selected on the basis of being best able to inform the D‐R relationship, rather than aiming for cure. This approach, where a single dose is tested in all subjects of the initial cohort, risks missing the dose likely to be most informative for defining the PK/PD relationship.An alternative approach is to spread a range of doses across a smaller number of subjects within the initial cohort and use PK/PD models developed based on data from this cohort to support dose selections of subsequent cohorts and studies. Using data from a previous study, 2 we undertook an in silico investigation of such an adaptive study design, aiming to reduce the number of subjects exposed to inefficacious doses, and to establish a D‐R relationship. This multiple‐dose‐groups‐per‐cohort design, referred to as the “2‐2‐4” design, is contrasted with the already implemented study design depicted in Figure  1 .Open in a separate windowFigure 1Comparison of standard and adaptive designs of IBSM studies. A/B/C, dose levels to be selected during the progress of the study based on pharmacokinetic/pharmacodynamic results of the initial cohort; CHMI, controlled human malaria infection; D‐R, dose‐response; IBSM, induced blood stage malaria infection; n, number of subjects at each dose.The objectives of this retrospective analysis were to: (i) compare PK/PD parameter estimates from the initial cohort of the 2‐2‐4 study design with the prior results from the data of the full study and (ii) propose a preliminary workflow to establish D‐R early in an IBSM study, and use modeling and simulation (M&S) to support dose selections for subsequent cohorts and later phase clinical trials.  相似文献   
2.
3.
The succinate dehydrogenase (SDH) enzyme complex functions as a key enzyme coupling the oxidation of succinate to fumarate in the citric acid cycle. Inactivation of this enzyme complex results in the cellular accumulation of the oncometabolite succinate, which is postulated to be a key driver in tumorigenesis. Succinate accumulation inhibits 2‐oxoglutarate‐dependent dioxygenases, including DNA and histone demethylase enzymes and hypoxic gene response regulators. Biallelic inactivation (typically resulting from one inherited and one somatic event) at one of the four genes encoding the SDH complex (SDHA/B/C/D) is the most common cause for SDH deficient (dSDH) tumours. Germline mutations in the SDHx genes predispose to a spectrum of tumours including phaeochromocytoma and paraganglioma (PPGL), wild type gastrointestinal stromal tumours (wtGIST) and, less commonly, renal cell carcinoma and pituitary tumours. Furthermore, mutations in the SDHx genes, particularly SDHB, predispose to a higher risk of malignant PPGL, which is associated with a 5‐year mortality of 50%. There is general agreement that biochemical and imaging surveillance should be offered to asymptomatic carriers of SDHx gene mutations in the expectation that this will reduce the morbidity and mortality associated with dSDH tumours. However, there is no consensus on when and how surveillance should be performed in children and young adults. Here, we address the question: “What age should clinical, biochemical and radiological surveillance for PPGL be initiated in paediatric SDHx mutation carriers?”.  相似文献   
4.
5.
Background Although prostate cancer is a leading cause of cancer death, its aetiology is not well understood. We aimed to identify novel biochemical factors for prostate cancer incidence and mortality in UK Biobank.Methods A range of cardiovascular, bone, joint, diabetes, renal and liver-related biomarkers were measured in baseline blood samples collected from up to 211,754 men at recruitment and in a subsample 5 years later. Participants were followed-up via linkage to health administrative datasets to identify prostate cancer cases. Hazard ratios (HRs) and 95% confidence intervals were calculated using multivariable-adjusted Cox regression corrected for regression dilution bias. Multiple testing was accounted for by using a false discovery rate controlling procedure.Results After an average follow-up of 6.9 years, 5763 prostate cancer cases and 331 prostate cancer deaths were ascertained. Prostate cancer incidence was positively associated with circulating vitamin D, urea and phosphate concentrations and inversely associated with glucose, total protein and aspartate aminotransferase. Phosphate and cystatin-C were the only biomarkers positively and inversely, respectively, associated with risk in analyses excluding the first 4 years of follow-up. There was little evidence of associations with prostate cancer death.Conclusion We found novel associations of several biomarkers with prostate cancer incidence. Future research will examine associations by tumour characteristics.Subject terms: Predictive markers, Prostate cancer, Risk factors  相似文献   
6.
7.
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号